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ABSTRACT

Magnitude Estimation of Conceptual Data Dimensions
for Use in Sonification

by

Bruce N. Walker

Most data exploration tools are exclusively visual, failing to exploit the
advantages of the human auditory system, and excluding students and researchers with
visual disabilities. Sonification uses non-speech audio to create auditory graphs. which
may address some limitations of visual graphs. However. almost no research has
addressed how to create optimal sonifications.

Three key research questions are: (1) What is the best sound parameter to use to
represent a given data type? (2) Should an increase in the sound dimension (e.g.. rising
frequency) represent an increase or a decrease in the data dimension? (3) How much
change in the sound dimension will represent a given change in the data dimension’?

Experiment 1 simply asked listeners which of two sounds represented something
that was hotter. faster. etc. However. participants seemed not to make cognitive
assessments of the sounds. I therefore proposed magnitude estimation (ME) as an

alternative, less transparent, paradigm.
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Experiment 2 used ME with visual stimuli (lines and filled circles). replicating
previous findings for perceptual judgments (length of lines. size of circles). However.
judgments of conceptual data dimensions (i.e.. the temperature. pressure. or velocity a
given stimulus would represent) yielded slopes different from the perceptual judgments.
indicating that the type of data being represented influences value estimation.

Experiment 3 found similar results with auditory stimuli differing in frequency or
tempo. Estimations of what temperature. pressure, velocity, size, or number of dollars a
sound represented differed. indicating that both visual and auditory displays should be
scaled according to the type of data being displayed.

Experiment 4 presented auditory graphs and asked which of two data descriptions
the sounds represented. Data sets based on the equations determined in Experiment 3
were preferred, providing validation of those slope values. Results also supported the use
of the unanimity of mapping polarities as a measure of a mapping's effectiveness.

Replication with different users and sounds is required to assess the reliability of
the slopes. However, ME provides an excellent way to obtain a function relating
conceptual data dimensions to display dimensions. which can be used to create more

effective. appropriately scaled sonifications.
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Introduction

Project Background

Motivation

In virtually every science classroom and research laboratory. researchers gather.
analyze. and attempt to interpret data. Fundamental pedagogical and investigative
practices rely on determining patterns in data. and reaching conclusions based on those
data patterns. Projects such as the Sloan Digital Sky Survey' and the Human Genome
Project” are generating vast amounts of new data, pointing out the need for more
powerful and easier-to-use tools for making sense of all this information. In many cases.
the data sets are not only huge: they are also multidimensional and rapidly changing.
Researchers must use all of the resources available to us. both technical and perceptual. to
display and interpret our scientific results. Computers in the laboratory and classroom
have made this data analysis task easier. There are many software tools available for data
exploration and analysis, and often a great deal of student learning and many very
promising scientific hypotheses result from interacting with and manipulating the data.
However. most data exploration tools in widespread use are exclusively visual in nature.

including graphing and plotting software. modeling programs. and 2 or 3D visualization

" http://www.sdss.org
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software. These tools fail to exploit the excellent pattern recognition capabilities of the
human auditory system, and they also continue to exclude students and researchers with

visual disabilities.

What is Sonification?

Sonification is the use of non-speech audio to convey information such as that
used in the interpretation of scientific results. Specifically. data sonification is “the
transformation of data relations into perceived relations in an acoustic signal for the
purposes of facilitating communication or interpretation” (Kramer. et al.. 1999). That is.
scientific data. of any sort. is used to change the parameters of a synthesized tone. In the
simplest case. it is often helpful to think of sonification as the process of creating
sophisticated “auditory graphs.” analogous to the visualizations produced by modern
graphing applications. However. sonification can involve many more than the 2 or 3
dimensions of data typically found in visual graphs.

Auditory display is a somewhat broader term referring to the use of any type of
sound to present or display information to a listener. This may include. but is certainly
not limited to, data sonification per se. The focus of the present research is on data
sonification in specific. but the findings should be of interest to the field of auditory

display in general.

* http://www.ornl.gov/hgmis/



18
Why Use Sound?

There are three main reasons why the use of sound to display data is important.
First. sonification provides scientists with a new and powerful display medium with
multiple distinct advantages over existing visual displays. Findings from the rich history
of research on auditory perception point to distinct advantages of the auditory system
over the visual system when dealing with temporal patterns and changes in data (e.g..
Hartmann. 1997: Moore. 1997: Sanders & McCormick. 1993). and when the visual
system is busy with another task (e.g., Brooks. 1968: Cohen. 1994; Wickens. 1992:
Wickens & Liu, 1988). The growing body of research on sonification clearly indicates
that auditory representation of data can. indeed. capitalize on these benefits of sound: in
the representation of temporal and high-dimensional data (Kramer. 1993: McCabe &
Rangwalla. 1994): in data monitoring tasks where the eyes are busy (Fitch & Kramer.
1994 Walker & Kramer. 1996): and in high-stress or critical conditions where cross-
modal correlations would be of value (Begault. Wenzel. Shrum. & Miller. 1996).
Sonification used for radiation monitoring (e.g.. the Geiger counter) is better than either
visual or combined audio-visual displays (Tzelgov. Srebro. Henik. & Kushelevsky.
1987). Some recent major discoveries. such as the “quantumn whistle™ (Pereverzev.
Loshak, Backhaus, Davis. & Packard. 1997), have demonstrated sonification can help

researchers make discoveries even when all manner of visual displays have failed.
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Second, sonification provides students and teachers with new pedagogical tools
that are effective and engaging. Science students need to learn to take advantage of the
benefits that sonification tools will provide to them as researchers. Using sound in the
classroom or teaching laboratory can provide a richer, more dynamic and effective
learning environment, while preparing students to use cutting-edge investigative
technologies. Woolf (1992) has shown that students are more eager to use multimedia
training systems. and as a result spend more time engaged in learning (see also. Atlas.
Cornett. Lane, & Napier, 1997). Flowers has shown that students judge statistical
properties equally well with auditory histograms. compared to either visual-only or
multimodal histograms (Flowers. Buhman. & Turnage. 1997: Flowers & Hauer. 1992,
1993. 1995). Flowers recommends the development of sonification sottware to help
students and teachers make full use of the auditory system in the classroom (Flowers.
Buhman. & Turnage, 1996). Thus. not only is sonification a powerful research tool. but it
is also a valuable pedagogical tool.

Third, for students or researchers with visual disabilities. simple and standardized
sonification methods will provide immediate inroads into the data analysis and
interpretation tasks so prevalent in modern science. While all researchers and students
stand to gain from the effective use of sonification. even more significant gains may be
realized when the display users are students or researchers with visual disabilities.

Science is still largely a visual endeavor, certainly not because it needs to be. but because
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the tools for learning and conducting science are more available for the visual modality
only. Some researchers have begun to look into the ways auditory displays can help blind
students. For example, Michael Kress at the City University of New York has
investigated the use of sound to teach calculus: John Gardner at Oregon State University
has worked on providing mathematics and physics materials to blind students: Alastair
Edwards at the University of York has used sounds to help blind algebra students: and
researchers at Purdue University are investigating audiotactile diagrams for blind
chemistry students. A solid theory of sonification design. and simple vet powerful
methods for creating them. will give both sighted and visually-impaired colleagues a
common reference point and provide the shared understanding necessary for

collaborative learning and discovery.

Brief History of Sonification: A Story of Trial and Error

While it is clear that sonification may have many benefits. it is not at all clear how
to design effective sonifications. Sound. in general. has been used for many vears to
display warnings and simple status messages (see Sorkin. 1987: Wickens. Gordon. & Liu.
1998). However, only fairly recently has there been any investigation of even this most
basic use of auditory displays (Edworthy, Loxley. & Dennis. 1991: Patterson. 1982:
Sorkin, 1988). Unfortunately. the auditory system, an excellent pattern recognition device

(Bregman, 1990: McAdams & Bigand, 1993), has still been underutilized in the display



of scientific data. There has been almost no scientific investigation into how best to
design such displays.

Until recently, most of the extant auditory displays. other than caution and
warning tones, have been used to monitor dynamic events or processes. capitalizing on
“the listener's ability to detect small changes in auditory events or the user's need to have
their eyes free for other tasks”™ (Kramer, et al.. 1999). Forbes (1946) mapped an airplane’s
flight data. such as altitude, compass heading, and fuel level. onto attributes ot a sound.
such as pitch, loudness, and left-right stereo location. This early auditory display allowed
pilots to perform well without visual instruments after only a brief training period. Quite
sophisticated auditory displays have been developed more recently for monitoring models
of a cola bottling factory (Gaver. Smith. & O'Shea. 1991) and a crystal factory ( Walker &
Kramer, 1996). and for monitoring multiple streams of patient data in an
anesthesiologist's workstation (Fitch & Kramer. 1994).

In the education realm. Gaver and Smith (1990) developed a collaborative
multimedia learning environment called SoundShark. which allowed students to learn
about physics. The sounds. or auditory icons. indicated user interactions. ongoing modes
and processes. and physical attributes of the “objects™ in the virtual learningscape. As an
example, the activation of “gravity” in the world was indicated by smooth. low-volume
sounds. Distance between a user’s hand and an object was indicated by the amplitude and

low-pass filtering effects on the sound that represented that object.



A few researchers have begun to use sonification to display static data for the
purpose of exploration and analysis. Early work in auditory presentation of seismic data
showed that subjects could successfully discriminate between earthquakes and bomb
blasts (Speeth, 1961). Hayward (1994) has followed up on this work by including oil
exploration and earthquake sonifications. By shifting the seismic data into the audible
frequency range, and simply “listening to the earth sing,” researchers have been attorded
another powerful tool for efficiently exploring and presenting huge volumes of data.

Data sonification is becoming more accessible, with the ubiquity of multimedia
computers and powerful data-manipulation software. It is also being used in a much
broader range of sciences. Part of sonification’s growing appeal is that it can be used to
display highly complex and multidimensional data. For example. participants in Fitch and
Kramer's (1994) auditory anesthesiologist's workstation monitored eight simultaneously
changing patient variables, and performed significantly better with the auditory version
than the visual display. Kramer has also described the sonification of five-dimensional
financial data (Kramer. 1994a) and nine dimensional chaotic data ( Kramer & Ellison.
1991). The list of data dimensions that have been successfully sonified is growing. and it
seems that many more data types, in a wide range of scientific fields. are amenable to
sonification. Some very recent research has used sonification to detect tumors in a
medical application (Martins & Rangayyan. 1997). make discoveries in physics

(Pereverzev, et al.. 1997), and analyze structural data from concrete highway bridges
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(Valenzuela, Sansalone, Krumhansl, & Streett, 1997). It is quickly becoming clear that
we are only scratching the surface of possibilities for using sound to display and help

interpret complex scientific data.

Problems with Past Sonification

While it certainly holds great promise. sonification is still a nascent tield and
almost no research has been done to determine how to design auditory data displays for
maximum effectiveness. There is little theory and virtually no experimental evidence to
guide sonification researchers and designers (though see Barrass. 1998. for a start). The
result has been that designers have used whatever “sounded good™ or “made sense™ to
them. Not infrequently researchers simply had to use whatever display dimensions they
had available (in many cases. only pitch) to represent whatever data dimension their
application needed. For example. McCabe and Rangwalla (1994) mapped blood pressure
in a heart valve onto pitch. but mapped turbine pressure onto loudness. Fitch and Kramer
(1994) mapped blood pressure onto pitch. and heart rate onto the tempo of a repeating
sound. Kramer (1996) mapped heartwall pressure simuitaneously onto pitch. loudness.
and two timbre dimensions. However, Papp and Blattner (1994) mapped heart rate to
either pitch or loudness. but not tempo. These are just a few examples that show how the

same data concept, such as pressure or rate. can be mapped to different auditory
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dimensions not only by different designers, but even by the same researchers in different

experiments!

Emerging Questions in Sonification

There are basic research issues that need to be addressed in advance of any
successful applications. First, the effective development of sonification depends on there
being at least some agreement among users about what sound attribute most clearly
represents a given data dimension. The consensus in Western culture that high frequency
sounds are associated with physically higher locations (i.e.. high pitch maps to “up:”
Mudd. 1963; Walker & Ehrenstein, 2000) is an example that indeed there is agreement
about certain mappings. However. it remains to be determined it such agreement exists
for other data and display dimensions. Hence. sonification researchers should not
consider it entirely axiomatic that there be agreement (at all) about what constitutes a
“good” mapping. Indeed. Kubik (1975) shows that there are cultural groups with very
different conceptions of sounds (see. also. R. Walker. 1987).

Research Question |

Nevertheless. assuming there is some agreement about mapping preterences. what
are they? What is the best sound parameter to use to represent some data. say.
temperature? [ consider this to be Research Question 1. Follow-on questions would

include whether there are gradations of “goodness.” That is. there may be some mappings
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that are considered excellent, or very obvious: some that are considered to be acceptable:
and some mappings that are agreed to be poor mappings. It is not at all clear if agreement
of mapping acceptability would be binary (only a good or bad mapping). or it there might
be “shades of gray.” as it were.
Research Question 2

Next. Research Question 2 is what the best polarities are for those mappings. For
example, listeners might agree that pitch should increase in order to represent increasing
temperature (a “positive” mapping polarity). whereas pitch should decreuse in order to
represent increasing size (a “negative” polarity).
Research Question 3

Once a designer does decide on what sound dimension to use to represent the
data, she will still need to know how much change is required in. say. the pitch of a
sound. in order to convey a given change in. for example. temperature. This issue of
appropriate psychophysical scaling of the dimensions. which [ consider Research
Question 3. is critical if sonifications are to be used to make accurate comparisons and
absolute judgments.
Later Questions

There are many other interesting and important research questions that will have
to be asked in order to bring sonification science up to the point of practical utility. but

which are unfortunately beyond the scope of this dissertation. However. since



consideration of these impending questions has helped to direct my research. [ will
mention some of them here.

One critical question that must be considered in the near future is whether
population preferences or stereotypes translate into performance. That is. do listeners
actually perform sonification-based tasks better with the mappings that are preferred (i.c..
considered intuitively “better™) by the population group? It should be stressed here that
the key measure of utility is in performance. and not necessarily in stated preterences. It
is sometimes the case that users claim to prefer something that is actually not best for
their performance (Andre & Wickens. 1995).

Then, assuming that there is some agreement within a group of people as to what
constitutes a good or bad way to map data onto display dimensions. it remains to be
determined whether agreement about “good™ and “bad™ mappings would be stable across
different populations of listeners.

A final over-arching question in all of this is whether sonification is a practical
solution for the needs of researchers and students. This question needs to be held in mind.
but cannot be fairly evaluated until a well-designed. principled sonification sottware
application can be created.

It should be added at this point that another basic and pressing need is tor an
understanding of sound metaphors in general. When a listener hears a sound. what does

that sound automatically connote? What could it possibly be used to represent? How is it
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that some sounds immediately evoke a certain thought or feeling? How can we capitalize
on this metaphorical use of sound? Answers to these questions. which are certainly tied
into the questions already raised, would help sonification researchers design display
systems that are easier to learn and use because they capitalize on listener expectancies.
They may also shed light on fundamental cognitive processes. providing a concrete

forum for linking perceptual input and meaning making.

Mappings and Metaphors: Walker and Kramer, 1996

Perhaps the only study intended specifically to address the issue ot data-to-display
mapping choices (Walker & Kramer. 1996: but see. also. Barrass. 1998) showed that it
does matter which auditory dimension is used to display a given data dimension. In
research conducted at Rice University. Walker and Kramer created a simulated crystal
factory. where undergraduates monitored the data dimensions of temperature. pressure.
size. and rate. Listeners used a sonification to simultaneously track all of the data values.
and if, for example. the sound indicated that the temperature was increasing then the
operator would respond by rapidly pressing a button to turn on a cooling tan. In this way.
both reaction time and response accuracy could be measured.

The four data dimensions were represented by the perceived sound dimensions ot
loudness. pitch. tempo, or onset time (i.e.. attack time, how quickly the sound reaches

maximum amplitude), in mapping arrangements that differed for each experimental



28

group. Clearly, even with only four data dimensions and four display dimensions there
are many possible mapping ensembles. Therefore, based on their experience with sound
and sonification design, the researchers chose one mapping that seemed to them (and to
others around them) to be the “*best’ or most “intuitive.” As shown in Table 1. an increase
in temperature was represented by an increase in pitch, pressure by onset time. size by
loudness, and rate by tempo. Each of these mappings. forming the “Intuitive™ ensemble
as a whole, seemed like it was most natural. and therefore should produce the best
performance. The researchers then picked a second ensemble that they felt would be an
“okay™ mapping, but probably not optimal. A third mapping ensemble was chosen that
seemed like it would actually be “bad™ or “counterintuitive.” Finally. a fourth mapping
arrangement. denoted the “Random™ ensemble. was chosen that happened to map the data
dimensions to the display dimensions in such a way that over the set of four ensembles.

each data dimension was mapped exactly once to each display dimension.

Table 1. Data-to-display dimension mappings used by Walker and Kramer, 1996.

Display dimension Data dimension
Temperature Pressure Rate Size
“Intuitive” ensemble Pitch Onset Tempo Loudness
“Okay” ensemble Loudness Pitch Onset Tempo
“Bad” ensemble Onset Tempo Loudness Pitch
“Random” ensemble Tempo Loudness Pitch Onset
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The first question for Walker and Kramer was whether or not there was a “best”
way to map these four common data dimensions onto this set of four auditory display
dimensions, and whether or not the researchers’ design decisions would capture that best
mapping arrangement. A summary of Walker and Kramer’s results for reaction time (RT)
is presented in Figure 1 (the accuracy data yielded comparable results). To the surprise of
the researchers, the mapping ensemble that resulted in the best performance was not the
“Intuitive™ ensemble. but rather the “Bad™ ensemble! Even the “Random™ ensemble
outperformed the supposed best choice. It is clear from these results that what sounds
“intuitive™ to several experienced sound designers may not produce the best performance
with average listeners. Of course. all mapping combinations were not tested. but from this
research it seems quite clear that even experienced sonification designers who must rely
on their own intuition. in the absence of any guiding theory. may not be making the best

sonification design.
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Figure 1. Reaction time for each of four mapping ensembles from Walker and Kramer, 1996. The
mapping ensemble that was expected to be most intuitive led to poor performance, while the
mapping that was specifically intended to be “bad” resulted in the best performance. This
demonstrates the need for experimentally validated sonification design recommendations.

The second question for Walker and Kramer was whether there was a particular
display dimension that was best for representing a given data type. That is. it one has to
represent temperature. which of these four dimensions is best for the job? Tuking into
account both RT and accuracy. they looked at the performance with each mapping pair.
across ensembles. Walker and Kramer summarized their results in the chart shown in

Figure 2.



Temperature Pressure Rate Size
Pitch ~ - y -
Tempo ~ x ~ x
Loudness v -~ - -
Onset Time x x x \
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Figure 2. Summary of best individual data-to-display dimension mappings, redrawn after Walker
and Kramer, 1996. Checks indicate a strong mapping based on both RT and accuracy: x’s
indicate a poor mapping; tildes indicate a mapping that was okay, but neither the best nor worst.

Walker and Kramer initially considered that either pitch or loudness might simply
be the best auditory dimension to use. regardless of the type of data. since listeners are
likely to be most tamiliar with these auditory dimensions. That is. perhaps what really
matters is how good a job the auditory display dimension will do. regardless of what it is
supposed to represent. Indeed. both pitch and loudness were acceptable for representing
all of the data types studied. Tempo was not as effective a display dimension. overall. and
onset time was a fairly poor dimension. However. as seen in the final row of Figure 2.
onset time was actually the best choice of display dimensions for representing size data.
despite its poor performance with the other data types. Further. from Figure 2 one can see
that pitch was not as effective as loudness for representing temperature. despite the
common experience that hot things (e.g.. a tea kettle) tend to make higher-pitched sounds
as they become hotter. Finally, tempo. which would seem naturaily suited to represent

“rate” information, was only moderately successful in that role.
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Thus, it is clear that the specific data-to-display mapping has a large impact on
performance in a rapid-response sonification-monitoring task. Recall that the only
difference between experimental groups was what the listeners were told a particular
sound meant. They all heard the same sounds and made the same manual responses.
Certainly, there are many open questions, here. It may be that tempo is. in fact. good for
representing rate information. but just not in the range of tempos used in this experiment.
Perhaps there is a particular reason why onset time is effective in representing size. For
example. one colleague reasoned that a small water droplet falling into a bucket makes a
“blip™ sound with a fairly sudden onset, whereas a larger drop makes a “bloop™ sound
with a slower onset. Perhaps listeners were subconsciously capturing this metaphoric
connection between onset time and size. Further investigation is needed to expand on
these findings. in order to build a theoretical basis for sonification design decisions.

Apparently. while there are at least some preferred data-to-sound mappings about
which most listeners will agree. these results demonstrate that even a team of sound
designers might not know how the wider listening audience will respond—and certainly
not without more research. It is simply not evident how common data values like
“acidic.” “salty,” “smooth.” or “high voltage™ should sound. Less evident is how more
subjective or affective information. such as good” or “‘successful” should be sonitied

(see Kramer., 1994b).
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Dimensions Used in the Present Research

In order to implement a successful sonification application, designers will need to
know a great deal about the underlying psychophysical functions between the data they
are representing and the sound dimensions being used to display them. However. [ could
not study all the possible sound dimensions, and certainly not all the possible data
dimensions. It was critical. then, to make wise choices for the data and display
dimensions to use here, in order to learn about dimensions that will have practical
applications. And on the other side of the same coin. [ will eventually want to test the
mappings and scalings that are obtained. so for this project I chose dimensions for which

an appropriate “'proof-of-concept” task could be constructed in the future.

Display Dimensions

There are a great many possible parameters of a sound that can be varied. some
gradually and systematically. and other not. My goal in this research was not to
investigate auditory perception. per se. nor to redo the 100 years worth of psychophysics
experiments that have been amassed (see. e.g.. Falmagne. 1985: Marks. 1974: Stevens.
1975). Rather, I am treading into the largely uncharted waters of using sound to represent
a data-based conceptual dimension.

To start with. the auditory display dimensions that I used. at least at the outset.

needed to be both systematically variable and easily reproducible. That is. if the results of






