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ABSTRACT

Sequences are recognized throughout the geologic record. The Angolan margin provides
an excellent opportunity to examine the factors that control the deposition and
preservation of sediments in sequences, as well as the factors that create the erosion or
non-deposition along sequence boundaries. The Angolan sequences can be compared to
global sequence charts and used to investigate the effects of local events versus global

events on the area’s sequences.

Using seismic sequence stratigraphic principles, a 2D regional seismic data set covering
three basins offshore Angola, the Lower Congo, Kwanza, and Benguela Basins, was
interpreted. Sequences and their unconformities were correlated within each basin as
well as between basins. Major sequences could be interpreted throughout and between
the three basins with a high degree of confidence. Additional sequences within these
major sequences were interpreted within a basin, but could not be correlated to the
adjacent basin with a high degree of confidence. Detailed interpretation of the sequence
stratigraphic significance of each reflector was performed on three profiles, one for each
basin. Chronostratigraphic charts were constructed using the detailed interpretation of
the profiles. Within the interpreted sequence stratigraphic framework, the timing and
mechanics of the formation of salt structures was examined. The Angolan basins contain
a variety of salt tectonic features. The reflectors of strata adjacent to the salt features

were used to determine the timing and mechanics of the salt structure formation.



iii
This study accomplished several objectives. The tectonic evolution of the Angolan
margin was reviewed. This study established a sequence stratigraphic framework for
Angola. The process of deposition and preservation of sediments as depositional
sequences was examined. The sequences were compared with the global sequence charts
as well as with eustatic, tectonic, and oceanic circulation events. The formation of the
sequence bounding unconformities was examined. Within the sequences, the interaction

of sedimentation and salt movement was described.
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CHAPTER 1 - INTRODUCTION

1.1 Objectives

Sequences are recognized throughout the geologic record. The Angolan margin and its
available seismic data grid provides an excellent opportunity to examine the factors that
control the deposition and preservation of sediments in sequences, as well as the factors
that create the erosion or non-deposition along sequence boundaries. The Angolan
sequences can be compared to global sequence charts and used to investigate the effects

of local events versus global events on the area’s sequences.

This study strives to accomplish several objectives. The tectonic evolution of the
Angolan margin is reviewed. The sequence stratigraphic framework of Angola is
established. The sequences are compared with the global sequence charts as well as with
events that are global, regional, and local. These events include sea-level changes,
tectonic events, and changes in oceanic circulation. The formation of the sequence
bounding unconformities is examined. Within the sequences, the interaction of

sedimentation and salt movement is described.

1.2 Study Area
The Angolan segment of the West African passive margin contains three offshore basins.
From north to south, these three basins are the Lower Congo, Kwanza, and Benguela

Basins (Figure 1.1). This study examined the sequence stratigraphic evolution of these
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Figure 1.1 - Location map of the offshore Angolan basins, the Lower
Congo, Kwanza, and Benguela Basins. The location of the basin
boundaries, the Congo River (solid line), Ambriz Arch (dashed line),
and the seamounts (open circles), are noted. The Walvis Ridge, the
southem boundary of the Benguela Basin, is located at approximately
19°S. Traces of the sixteen reflection seismic lines interpreted in this
study are thick black lines. The position of the DSDP site 364 is the
black dot.
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basins. The study area is located between 6°S and 13°S, and 10°E and 14°E. The area

covered by the study is approximately 300 by 850 kilometers (255,000 km?).

The extent of the offshore Angolan basins is defined by physical structures (Figure 1.1).
The Angolan part of the Lower Congo Basin is bounded on the north by the canyon of
the Congo River at approximately 6°S. The boundary between the Lower Congo Basin
and the Kwanza Basin is the Ambriz Arch located between 7°S and 8°S (Standlee et al.,
1992). The boundary between the Kwanza and Benguela Basins is the chain of
seamounts at approximately 11°S (Spencer et al., 1998 and Brock et al., 1998). The
southern boundary of the Benguela Basin, which separates the basin from the Namibe

Basin, is the Walvis Ridge (Lehner and de Ruiter, 1977).

The study area extended from the shelf region to the abyssal plain in each of the three
basins. While the Kwanza Basin does extend onshore (Brognon and Verrier, 1966), only
the offshore portion is included in this study. The range of water depths covered in the

basins is from 100 meters or less to four kilometers.

1.3 Data Set
The data set of this study included a 2D reflection seismic grid and well data from a Deep

Sea Drilling Program (DSDP) Site (Bolli and Ryan, 1978) (Figure 1.1).
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The reflection seismic grid is a combination of various vintages of seismic data acquired
by Western Geco. The acquisition dates of the seismic data range between the early
1970s and 1998. The older data covers the shelf region. The recent acquisition of high-
quality regional reflection seismic lines extended from the earlier shelf lines to the ultra-
deep water area (water depth > 1000 meters). The recent acquisition also covered the

shelf region of the Benguela Basin.

The processing of the seismic data, including migration, was not part of this study. As
with the data acquisition, the seismic data processing was performed in various years.
The different vintages of data were processed with different processing flows and

algorithms.

The 2D regional seismic grid interpreted for this study consists of twelve dip lines and
four strike lines (Figure 1.1). The seismic line lengths add up to 5750 kilometers of data.
The spacing between lines varies between 20 and 100 kilometers. The three seismic dip
lines in the Lower Congo Basin are separated by about 50 kilometers. There are three
strike lines through the Lower Congo Basin, the fourth strike line does not extend
northward through the basin. The Lower Congo strike lines are separated by 50 to 75
kilometers. The distance between the Lower Congo and Kwanza dip lines is less than 50
kilometers. The Kwanza Basin dip lines are spaced at 50 to 75 kilometers, while the
strike lines are spaced at 50 to 100 kilometers. The Kwanza and Benguela Basins

profiles are separated by approximately 100 kilometers. The Benguela Basin dip lines
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are spaced at 20 to 75 kilometers, while the strike lines are spaced at 50 to 100

kilometers.

Well data from DSDP site 364 was primarily used to constrain ages of the horizons
interpreted on the seismic lines. In 1975, 296 meters of core was recovered from a 428
meter section at site 364 (Bolli and Ryan, 1978). The position of the well is 11°34.32°S,
11°58.30’E (Figure 1.1) (Bolli and Ryan, 1978). The water depth at this position is
approximately 2450 meters (Bolli and Ryan, 1978). A number of measurements were
taken and analyses were performed on the core by the shipboard scientific party. These
measurements include sonic velocity, bulk density, shear strength, porosity, lithology,
biostratigraphy, and paleontology (Bolli and Ryan, 1978). The measured velocity of the
cored units allowed the correlation of the core to a reflection seismic section across site
364. Comparison of this study’s seismic profiles and the DSDP seismic and well data
allowed correlation of cored, dated units to seismic units and horizons. The lithologic
data of the core provide a framework for the interpretation of the deep water portions of
the seismic sequences. The planktonic foraminifers, benthic foraminifers, calcareous
nannoplankton, and radiolarians were studied by the shipboard scientific party (Bolli and
Ryan, 1978). The biostratigraphy and paleontology of the core provided ages for the
unconformities and horizons in the core and on the seismic sections (Bolli and Ryan,

1978).



1.4 Methodology

The study is based on the analysis of seismic sequence stratigraphy. The interpretation of
the seismic data follows the principles described in the AAPG Memoir 26 — Seismic
Stratigraphy-applications to hydrocarbon exploration (Mitchum et al., 1997; Sheriff,
1977; and Vail et al., 1977), AAPG Studies in Geology 15 — Seismic Expression of
Structural Styles (Bally, 1983), and AAPG Studies in Geology 27 — Atlas of Seismic
Stratigraphy (1987) (Bally, 1987, Shell Oil Company, 1987, and Vail, 1987). The
analysis of the seismic data includes both an evaluation of individual reflectors and
patterns of a group of reflectors. Individual reflectors can vary in geometry, amplitude,
frequency, continuity, and termination style. Patterns of a group of reflectors can may be
parallel, subparallel, divergent, prograding clinoforms, or chaotic (Vail et al., 1977).
Using the termination patterns of reflectors, unconformities can be interpreted. Using
sequence stratigraphic principles, the record is separated into depositional sequences

bounded by unconformities and their correlative conformities (Mitchum et al., 1977).

The sequences and their unconformities are correlated within each basin as well as
between basins where possible with confidence. Major sequences were identified that
could be interpreted throughout and between the three basins with a high degree of
confidence. Additional sequences within these major sequences were interpreted within a
basin, but could not be correlated to the adjacent basin with a high degree of confidence.

Detailed interpretation of the sequence stratigraphic significance of each reflector was
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performed on three profiles, one for each basin. Chronostratigraphic charts were

constructed using the detailed interpretation of the profiles.

Within the interpreted sequence stratigraphic framework, the timing and mechanics of the
formation of salt structures was examined. The Angolan basins contain a variety of salt
tectonic features. The reflectors of strata adjacent to the salt features were used to

determine the timing and mechanics of the salt structure formation.



CHAPTER 2 - TECTONIC EVOLUTION OF THE ANGOLAN MARGIN

2.1 General evolution

The geological development of the offshore Angolan basins is traced back to the
supercontinent of Pangea. The metamorphic basement of the Angolan basins formed by
the Pan African/Brasilianos orogeny during the beginning of the Phanerozoic (Burke et
al., 1977; Kroner, 1980; and Gerrard and Smith, 1982). Initiated during the Jurassic, the
breakup of Pangea and the formation of the Atlantic Ocean began with regional uplift and
volcanism with the rupture of the continental crust (Emery and Uchupi, 1984 and
Standlee et al., 1992). The African and South American continents separated. The
separation began at the southern end of Pangea and migrated to the north (Nurnberg and
Muller. 1991). Lacustrine deposits were formed during the rifting stage in the Jurassic
and Early Cretaceous (Brice et al., 1982; McHargue, 1990; Henry et al., 1995; and
Braccini et al., 1997). Oceanic crust was implaced along the mid-oceanic ridge. To the
south of the Angolan basins, oceanward divergent reflectors (ODRs) represent the
accretion of oceanic crust during initial seafloor spreading (Abreu, 1998 and Talwani and
Abreu, 2000). These ODRs are either not present or not seismically observable under the
Angolan basins. As marine waters formed the early ocean, physical barriers restricted the
flow of the saline waters. In the Aptian, salt layers formed, filling the early post-rift
basins (Belmonte et al., 1965; Pautot et al., 1973; Burke, 1975; Evans, 1978: de Ruiter,
1979; and Hardie, 1990). Once the marine incursion was established, a margin section

developed along the basins as a result of drifting, thermal cooling, and subsidence
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(Emery et al., 1975; Lehner and de Ruiter, 1977; Rabinowitz and LaBrecque, 1979; Keen
and Beaumont, 1990; Poag and de Graciansky, 1992; Uchupi, 1992; Walgenwitz et al.,
1992; and Marton et al., 2000). Shallow water carbonates developed during the Albian
time (Brognon and Verrier, 1966; Tillement, 1987; Walgenwitz et al., 1990; and Ala and
Selley, 1997). Clastic deposition followed along with westward tilting of the margin
(Gerrard and Smith, 1982; Walgenwitz, et al., 1992; Platt et al., 1993; Ala and Selley.
1997; and Marton et al., 2000). The combination of the sedimentation and the tilting,
stimulated the movement of the salt layers (Duval et al., 1992; Lundin, 1992; and Maudit
et al., 1997). Subsequent deposition was influenced by and in turn influences the
development of salt structures (Baumgartner and van Andel, 1971: Kneller and
McCaffrey, 1995; and Spathopoulos, 1996). An interplay of salt movement and sediment
deposition dominated the Tertiary development of the basins. The uplift and erosion of
Africa also sourced and affected the Tertiary sedimentation (Bond, 1978; Sahagian, 1988;
Lunde et al., 1992; and Nyblade and Robinson, 1994). The three basins offshore Angola

are separated by physical barriers and by their sedimentary histories.

2.2 Pre-rifting

The basement of the Angolan basins consists of faulted metamorphic rocks (Gerrard and
Smith, 1982). Overlying this basement are prerift clastics. These clastics have been
penetrated by wells onshore as well as offshore on the Angolan shelf and consist of
massive, clean, well-sorted sands and siltstones (Brice et al,, 1982 and Gerrard and

Smith, 1982). These clastics were presumably deposited in a broad, shallow lake system
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in a gently subsiding intracratonic basin. This prerift sequence is over | kilometer thick
in some wells (Brice et al., 1982 and Gerrard and Smith, 1982). Rifting has faulted and
rotated the layers. The age of the prerift clastics range from Jurassic until the initial
rifting in the Cretaceous (Brice et al., 1982 and Gerrard and Smith, 1982). The prerift
sequence is topped by volcanics that herald the beginning of the rifting phase. (Brice et

al., 1982)

2.3 Rifting

The breakup of Pangea initiated during the Early Jurassic between North America and
Africa (Emery and Uchupi, 1984). South America and Africa separated along the South
Atlantic Rift beginning in the south during the Jurassic and progressing northward
(Nurnberg and Muller, 1991). The rifting of the Angolan and Brazilian margins began in
Early Cretaceous, Berriasian time and continued along the Angolan coast and its
conjugate Brazilian coast through the Neocomian to the Aptian (Karner et al., 1997 and
Karner and Driscoll, 1999). The rifting may have initiated by hotspots and propagated
from these points (Standlee et al., 1992). The Brazilian basins that are conjugate to the
Lower Congo, Kwanza, and Benguela Basins are the Espirito Santo and Campos Basins
(Figure 2.1) (Cainelli and Mohriak, 1998). The Angolan and Brazilian basins share the
same pre-rift and initial rifting history. Both the Angolan and Brazilian side of the rift
have hinge zones that may correlate (Kamer and Driscoll, 1999). The Angolan syn-rift
deposits indicate three phases of rifting. Each phase produced an unconformity bound

sequence (Karner et al., 1997). A cartoon of the Angolan side of the
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Figure 2.1: Early Cretaceous position of Brazilian and Angolan
sedimentary basins (modified from Cainelli and Mohriak, 1998).

I



12
rift displays the rifted Pre-Cambrian basement and the three syn-rift sequences (Figure

22).

According to Standlee et al. (1992), the South Atlantic Rift system may have been
initiated by two hotspots, the Walvis hotspot and the Benue triple junction. The Walvis
hotspot is located to the south of the Benguela Basin, the southernmost Angolan basin.
The Benue triple junction is located off the coast of Gabon to the north of the Angolan
margin. The initial breaks occurred over the two hotspots. Megatractures propagated
away from the hotspots and linked in the vicinity of NW Gabon/NE Brazil, north of

Angola (Figure 2.3) (Standlee et al., 1992).

The continents of Africa and South America separated during the Early Cretaceous. The
age of the South Atlantic oceanic crust is used to reconstruct the plate positions and
movements. The oldest oceanic crust recognized off the coast of Angola is associated
with chronozone M3, about 124 to 127 Ma (Figure 2.4) (Cande et al., 1989). The timing
and location of the oceanic/continental transition is limited by the Cretaceous magnetic

quiet zone.

During the rifting phases, two major tectonic hinge zones developed along the West
African margin (Karner and Driscoll, 1999). The Eastern Hinge Zone is located onshore
Angola. The Atlantic Hinge Zone is located offshore of Angola, but to the north of

Angola, it is also onshore. Both of the hinge zones trend subparallel to the margin
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Figure 2.2: Cartoon of the evolution of the. Angoian margin.
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Figure 2.4: South Atlantic chronozones- The M3 chronozone
offshore Angola is highlighted by the arrow. The M3 chronozone
formed about 124 to 127 Mya. There is a magnetic quiet zone
that limits the timing and location of the oceanic/continental
transition offshore West Africa. The oceanic/continental
transition is between the C34n (997 to 120 Mya) and M3 (124 to
127 Mya) chronozones (modified from Cande et al, 1989).
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(Figure 2.5). The Eastern Hinge Zone separates syn-rift deposits to the west from
Precambrian basement to the east. Therefore, the Eastern Hinge Zone is the eastern limit
of extension. The Atlantic Hinge Zone is located on offshore profiles under the current
shelf/slope transition. The Atlantic Hinge Zone is interpreted as a series of en echelon.

high-standing blocks, rather than continuous (Karner and Driscoll, 1999).

The two West African hinge zones may be related to two hinge zones located on the
eastern Brazilian margin (Karner and Driscoll, 1999). Both the western/onshore and the
Alagoas Hinge trend subparallel to the Brazilian margin. The western/onshore hinge
zone separates the syn-rift deposits to the east from the Precambrian basement to the
west. The Alagoas Hinge is a relatively continuous series of highstanding basement
blocks. As the Atlantic Hinge Zone, the Alagoas Hinge separates shallow and onshore

depocenters from deeper water depocenters (Figure 2.5) (Karner and Driscoll, 1999).

The hinge zones were formed by rift-induced uplift (Karner and Driscoll, 1999). The
area on the landward side of a hinge zone experiences crustal unloading. This force
creates the faults along the hinge zone. The Eastern Hinge Zone formed when rifting.
began in the South Atlantic. The hinge zone was the eastern limit of significant extension

and depocenters during rifting (Karner and Driscoll, 1999).

The Atlantic Hinge Zone developed during a later rifting phase (Karner and Driscoll,

1999). During the second major phase of extension, the main axis of rifting shifted to the






