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Efficient Implementation of First-class
Polymorphic Methods in Java

James Sasitorn

Abstract

This thesis describes a new implementation architecture for polymorphic methods in
Generic Java using the NEXTGEN compiler framework. The standard Generic Java
(Java 1.5) compiler erases generic types at compilation. This transformation pro-
hibits type-dependent operations, limiting generic expressivity. Type erasure causes
unchecked warnings at compilation, and unexpected behavior or exceptions at run-
time. Alternative reflection-based implementations of Generic Java support type-
dependent operations at the cost of significant execution overhead. In contrast, this
work presents an efficient implementation of polymorphic methods using NEXTGEN.
An extended NEXTGEN compiler generates snippet environment template classes to
encode type-dependent operations for polymorphic methods. A customized class-
loader generates specialized template instantiations on demand. This demand-driven
code specialization provides an efficient mechanism to propagate runtime type infor-
mation, while maintaining backwards compatibility with existing libraries and Java
Virtual Machines. Benchmarks show runtime support for polymorphic methods in
NEXTGEN outperforms reflection-based approaches, with runtime overhead compa-

rable to erasure-based Generic Java.
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Chapter 1

Introduction

Java has changed the nature of software programming with its support for object-
oriented design, comprehensive static type checking, ”safe” program execution, and
its unprecedented degree of portability. Despite these great strides, the absence of
generic types prior to Java 5 has prohibited the expression of many statically checkable
program invariants within the type system. Typically Java programmers simulate
parametric polymorphism by using the universal type Object, or any more suitable
bounding type, in place of a type parameter T, and then insert casts to convert the
erased object back to the particular instantation type. Aside from the clutter of
casting operations, this methodology obscures type abstractions and thus degrades
the precision of static type checking. Generic types allow classes and methods to be
parameterized with respect to type, thus providing type abstraction that could not
otherwise be expressed in a statically typed language.

The most recent major release of the Java platform (J2SDK 5.0) marks an impor-
tant step in the advancement of the Java language. Java 5.0 supports a second-class
formulation of Generic Java called GJ. GJ supports type parameterization of classes
and methods, but prohibits the use of parameterized types in type-dependent opera-
tions. The unsupported operations include parametric casts, parametric instanceof
operations, and new operations of "naked” parametric type, e.g., new T(). This subtle
restriction is necessary since parametric type information is erased during compila-
tion. The compiler generates a single, type-erased class file for all instances of a
generic class.

These limitations fueled the development of an alternative, first-class formulation



of generics called NEXTGEN, originally designed by Cartwright and Steele, that is
upward compatible with with GJ. NEXTGEN overcomes the limitations inherent in
GJ by introducing light-weight classes that inherit common code from a type-erased
base class to represent each instantiation of a generic type. Although this mildly
heterogeneous implementation of genericity is more complex than GJ, it is just as
efficient and fully compatible with existing Java legacy code.

The original NEXTGEN2 architecture supported polymorphic methods based on
the assumption that possible instantiations of generic classes and polymorphic method
instantiations could be statically bound. However, the design of generics in Java 5
allows cycles in the type application graph, thus enabling programs to create an
infinite number of class and method instantiations. Allen and Cartwright revised the
NEXTGEN2 implementation architecture to create class instantiations on demand
using a custom classloader[2]. But their design for supporting polymorphic methods
was incomplete and unimplemented.

This thesis presents an efficient implementation of polymorphic methods using
NEXTGEN. This new work, called NEXTGEN2 to avoid any ambiguity, applies
the demand-driven code specialization techniques used for generic classes to pro-
vide support for type-dependent operations in polymorphic methods. Specifically,
NEXTGEN2 creates light-weight templates called snippet environments to encap-
sulate the type-dependent operations used in polymorphic methods. Thus, type-
dependent operations are fully supported without any loss in compatibility with legacy
code or Java Virtual Machines (JVMs).

The remainder of this thesis is organized as follows. Chapter 2 introduces the
existing NEXTGEN translation for parametric classes. Chapter 3 discusses the uses
of parametric methods and their design in the NEXTGEN2 compiler. Chapter 4
provides more technical implementation details of this work in NEXTGEN2. Chapter
5 provides an overview of other research in the field. Chapter 6 provides performance

benchmarks of polymorphic methods, and chapter 7 concludes.






