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Abstract

Van der Waals interactions in Density Functional Theory

by

Adrian Daniel Boese

Various density functional methods have been tested for the van der
Waals interactions of the rare gas dimers He,, Ne, and Ar, as model
compounds. Detailed analysis proved that all tested and commonly used
functionals are not suitable for an appropriate description of the
interactions, even if Hartree- Fock exchange is used in combination with a
correlation functional. However, within the framework of long- range
density functional theory, van der Waals coefficients are correctly
reproduced by a density- density interaction term. Adding these
interactions separately to the tested functionals, surprisingly good results

are obtained by using exact exchange.
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1. Introduction

1. General remarks

Van der Waals interactions are believed to be one of the most important
topics in the future interest of chemistry. An obvious reason is that they are
attractive and they occur everywhere. There are van der Waals forces
between all atoms, even if their contribution is small compared to the
entire binding energy of a whole molecule. However, despite their
weakness, they are important to the whole of chemistry: the solid state of
neutral species is defined by the cooperativity of these weak interactions.
they are most important to biological systems and last but not least, any
chemical reaction that is defined by cleavage and breaking of chemical
bonds that starts with weak interactions because the molecules have to
approach each other first. The main problem is that they are not well
understood; the theory is complicated and theoretical calculations on them

are only possible for small molecules.

2. History

Van der Waals forces were first described by Johannes van der Waals in

1873 when he suggested an approximate equation to characterize the
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interaction of real gases. This equation introduces two van der Waals

coefficients to modify the ideal gas law (1.1).

pV =nRT (1.1)

The resulting equation (1.2) introduces terms that include the non-zero
volume of a gas (characterized by the coefficient b) as well as a reduction
of the pressure which arise from the attractive forces of gas molecules.
These attractive forces are proportional to both the kinetic forces and the

collision frequency (whereas both are proportional to n/V), thus leading us

to (p+a-[-3—]-)(V—nb)=nRT (1.2)

1.5

nin,

25— - A

[«
0.1

Figure 1.1:The van der Waals isotherms at several values of T/T. (this ratio is given to
normalize the Temperature). A selection of individual isotherms is displayed. T /T. is the
normalized molar volume and p/p, the normalized pressure. [From P.W.Atkins, Physical

Chemistry, Oxford University Press, 1994 (5th ed.)]
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This equation (1.2) actually includes not only van- der Waals forces, but

also electrostatic and ionic forces if present. However, this is not
instantaneously obvious by looking at Figure 1.l1: when plotting the
pressure against the volume we also have a way to describe our van der
Waals force: When the volume decreases, the pressure should increase
under normal (ideal gas law) conditions. But if there are attractive forces
holding these particles back, the pressure decreases as well (or stays the
same under real conditions). These attractive forces effect the gas particles
the most if they are closer together, until the repulsive forces of equally

charged nuclei take over.

E [kd/mul]
1 50

1tH) J
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3s 4 45 s 55 P
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Figure 1.2: The ArAr dissociation energies plotted against the distance of the atoms in

Angstrom. The minimum characterizes the van der Waals interaction of the dimer.
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We can also plot the energy of a gas dimer versus the distance between the

atoms or molecules, and we get a characteristic minimum (Figure 1.2).
Another more precise picture is given when we look at interactions
between molecules and at the electronic contribution to these interactions.
This picture comes from the non- classical theory of Quantum Mechanics.
Van der Waals forces emerge from instantaneous random dipole- random
dipole interactions, which arise from fluctuations in the quantum
mechanical dipole moment (at temperatures larger than 0 K the forces will
increase due to thermal oscillations of the electron density). These
interactions are proportional to V(r) = - C / r®, where C is proportional to
Planck’s constant and the polarizability (ct) of each component. In Quantum

Field Theory, these interactions are described as plasmon- plasmon

interactions with a frequency w and a wavevector k.

3. Applicability

Every bimolecular chemical reaction in the gas phase starts with two
molecules or atoms, well separated from each other. In this case van der
Waals forces become important, although chemical reactions mostly occur
due to statistical collisions of molecules because of their own kinetic

energies at finite temperature. But since most theoretical calculations are
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performed at 0 K, where no kinetic energy is present, the van der Waals

force is the only factor that lets two molecules approach each other.

Reactants

Figure 1.3: A three- dimensional perspective (a) and contour map (b) for a model chemical
reaction. The solid line is the reaction path. [From G.M. Maggoira and R.E. Christoffersen. in
Transition States of Biochemical processes, ed. R.D. Gandour and R.L. Schowen, New York. Plenum.
1978]

During this approach, they sometimes encounter a unique point which
determines the kinetics of the reaction. At this point, a saddle point on the

potential energy surface, (Figure 1.2) the derivative of the potential in
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respect to each cartesian coordinate is zero (dV/dq, = 0). It is also called the

Transition State (TS) and constitutes the energy maximum along the
reaction path. By knowing the different energies (electronic, vibrational,
rotational) of the system at this transition point and of the reactants, we can
determine the rate of reaction. There may be several transition states along
a reaction pathway as illustrated in Figure 1.3. Van der Waals interactions
play an important role for describing the first maximum if no other forces
for the potential are present, such as dipole- dipole or dipole- random

dipole interactions.

[n order to understand long-range interactions between atoms or
molecules, a correct description of the van der Waals forces is required.
This means that it is imperative to describe this force properly to give an
accurate description of the conformation of molecules and their relative
position to each other, especially in biological systems. If one biological
molecule undergoes a chemical reaction with another one, they usually
react after a certain key- keyhole principle, which means they have to fit
each other in order to react. This is determined by the vdW interaction of

both molecules.
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These forces are also responsible for the solid state except for ionic

crystals. Although more than 200,000 crystal structures of molecules are
known, no generally applicable tool exists to predict the symmetry of a

molecular crystal.

In surface reactions, such as those involving catalysts, van der Waals forces
become even stronger, because we now have a solid (not simply an atom or
a molecule) interacting with the molecule. Thus, the force will no longer

scale as r® but as .

The simplest case for the investigation of van der Waals forces is the model
in which two noble gas atoms approach each other. Since experimental data
are available for those dimers, they can be taken as representative for the

whole interaction itself.

4. The Connection to Theories

The question that arises is how accurate can known theories describe these
forces and what improvements and suggestions can be made in order to
describe them better. There are actually two different common approaches

in non- classical theory:
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(1) The Quantum Chemical approach, which uses the tools of Quantum

Mechanics.

(2) Density Functional Theory (DFT) based on the electron density.
Selected Quantum Mechanical methods and also various numbers of
Density Functional methods will be tested. A prerequisite for
understanding and interpreting the computational resuls shown in chapter 3
is a deep understanding of the theoretical background of each method
applied. It was necessary to work this out in detail and to consider the
essential formulas and their derivations which will therefore be displayed
and explained in chapter 2. This chapter is an overview in respect to the

formulas needed for this work but does not claim to be comprehensive.



2. Theory

1. Quantum Mechanics

1. Hartree- Fock

1. The Schrédinger equation

Since the formulations of Quantum Mechanics in 1925 (Heisenberg)', 1926
(Schrodinger)™ and 1958 (Dirac)’ it is possible, at least in principle, to
calculate the energy of any Quantum Mechanical system. All three
tormulations give the same answers, but use different notations- Heisenberg
used matrices (matrix mechanics), Schrodinger used differential equations
(wave mechanics) and Dirac used the so- called Dirac- notation.

For simplicity, we will restrict ourselves mainly to differential equations
and utilize the Dirac notation at the end of this section.

The Schrédinger equation (2.1) permits us to calculate the energy of any

atom or molecule (however, it neglects relativistic effects):

_hd ¥(gy) A *¥(q.1)

V(g,t)¥(q,t) (2.1
PR zmaqg*‘(Q)(‘I)()

.where 7 is Planck’s constant, m is the mass of the system, q is a spatial

coordinate and ¥ is the complex wavefunction and contains all possible

information about a system. Considering that the wavefunction is complex,
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‘¥’ is not observable, but its squared expression, the probability density p

is.

p =[¥(q.0 =¥y - ¥(qy) (2:2)

Here V" denotes the complex conjugate to ensure a positive number (since
[(1) * (-i)] is equal to one).

Equation (2.1) becomes the time- independent Schrodinger equation as long
as the system does not experience any time- dependent external forces. This
holds true for a bound state. Hence, we can separate variables:

W¥(g,t) = f(t)¥(q) (2.3)

Equations (2.1) and (2.3) lead after integration to:

_ B 3*¥(q)
2m 9 x?

+V(q)'¥(q) = E¥(q) (2.4)

Since this discovery, much effort has been devoted to approximating this
equation and to solving ab inirio, without any empirical parameters fitted to
experimental data. The first part of the equation is the Hamiltonian

Operator.

h* 92

V(g)=H 2.5
2m8q2+ (@) (2:3)

It consists of the kinetic energy operator and the potential energy, V(r).

Substituting (2.5) into (2.4) gives us

H(q)'¥(q) = E¥(q) (2.6)
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As illustrated in eguation (2.7), we have an n- electron, N- nuclei system.

leading to the formidable looking Hamiltonian:

5

[§%]

_h

S AR NS L S

N
2 % o« 2m, a Boa 47r80 B @ 47r£0 >j 4megr;
(2.7)
where the indices i and j are used for the electrons and o and B are used
for the nuclei. The Laplacian operator
3’ J° J° 2

7.*_ 7+ 7::V (2-8)
d x~ dy- dz”

is used for the kinetic energy and T denotes the whole coordinate space.
The various terms in our expression (2.7) are the nuclear kinetic energy

operator:
,
. R Vil
=% o 2.9
N = 2 Y; (2.9)
the electronic kinetic energy operator:

(2.10)

the nuclear- nuclear repulsion energy operator:

VA Zﬂe
(2.11)

=22 —

o Bra 471-‘(':0 af

the electron- nuclear attraction operator:



- Z e’
Ven =0, > —F— (2.12)
© a i 47r£0ri¢z

and the electron- electron repulsion operator:

~ ez
V.= 2.13
ce ZZMEW (2.13)

io>i
The first approximation to equation (2.7) is the Bom- Oppenheimer
approximation.® This approximation is used to separate electronic and
nuclear motions, which is accurate if the frequencies of both wave
functions are different. This holds true for the ground states of heavy

atoms (usually larger than Helium).
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Figure 2.1: If we take as an example two different functions, we can easily separate them if
their frequency is different (a). In contrast to that. if both wavefunctions have the same

frequency, it is impossible to separate them correctly and to predict their amplitude (b).

Figure 2.1 illustrates this fact and also why the Born- Oppenheimer
approximation is valid. Hence we can separate the wavefunctions, and get
the Hamiltonian:

X xg) = Vo (xi5%0 )Py (xg) (2.14)

We can make equation (2.7) simpler by solving first for the electronic

energy:

2 b

2V *—ZZ Y —— @213

471'80 i>; 4meg rij

~

Hcl =Te +VcN +Vec ==

and solving with the constant nuclei- nuclei repulsion energy for the

electronic wavefunction:

(I:Iel+ VNN)Wel(xi;xa) = U(Xa)‘l’e,(x,-;xa) (2.16)
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Then it is possible to evaluate the nuclear wavefunction, leading to an

approximate energy for the whole system with fixed nuclei:
(TN'*' U(xa))LPN(xa)z ETN(Xa) (2.17)

In general, simplification allows the solution of three- body problems (like
the H," ion), but for many- electron; many atom systems further

approximations are needed.



2. Hartree- Fock

The most well known and probably most used approximation is the Self-
Consistent Field Hartree- Fock”® [SCF-HF] method for molecules.® For its
treatment let us consider the Variational Theorem first. This theorem is
applicable to ground states and tells us that any approximate wavefunction
will always have an energy expectation value that is above the ground state
energy.'® Hence, we will always get an upper bound to the exact energy of
the lowest state, so we can guess our wavefunction and lower the energy
afterwards by optimizing it. First, we have to create an initial guess for this
wavefunction. For this purpose, we use a set of orthogonal orbitals, 0,
which are represented by a suitable function (preferably a function which
is close to an atomic orbital). These orbitals are then multiplied by the spin
function(s), G,(s), to provide the right spin symmetry (o or ) and another
coefficient ¢,. The latter coefficient will be used to minimize the energy.
This product, the spin orbital ¥ (x) (also atomic orbital AQ), is
orthonormal to all other spin orbitals and will be used in a Slater
determinant to describe the ‘real’ wavefunction. The Slater determinant
satisfies the antisymmetry requirement for a many- electron system. All
elements in a column of this determinant involve the same spin- orbital,

likewise all the elements within a row involve the same electron:
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Wl(xl) ws(x,) wy(x;)
| vi(xa) Wz(xz) Vs (xz)
¥, =— 2.20
HE = TR ( )
Wl(xN) ‘Vz(x,v) - - WN(XN)

, which is equal to:
l
lPHF=?d’et(Wl 'WZ '...‘WN) (2.21)
VN

We now focus our attention on just one electron. The others will be
regarded as smeared out and supplying a static contribution. We will then
average the interactions between electron one and the other electrons.
Equation (2.13), which describes the electron- electron repulsion,

is the only term in the Hamiltonian (2.7) which is affected by this
approximation, since it depends on two electrons.

By integrating (2.13) over all space v, applying (2.2), considering the
charged background density and summing over all occupied orbitals we can

obtain the potential for one electron:

\‘/CC=N§622 | Vi gy, (2.22)
j 4megn; /

which becomes (2.23) for all electrons:

=occ

jij =N232JIW:'(XI)‘V:(X1)

ij=l

dregn v, (xa)y(xoJdvidv;  (2.23)
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denoting the Coulomb integrals.

For simplicity we will now change to the Dirac notation. Qur wavefunction
W yr is again described by a determinant, and our integrals are denoted in
the bra (< [) - ket (I >) notation. All our equations will use atomic units
(causing the 4me, term to vanish). In this notation, Equation (2.23)

becomes:

Py

Iy =(v, |é|%w,~>=<%wf l:ll:’ijj> (2.24)

Because we are assuming orthogonality we change variables from the ket-
to the bra vector by taking the complex conjugate.
The entire two- electron contribution is thus described by equation (2.25).

giving the electron- electron repulsion energy:

1
Vee =(Vur lr_|\PHF> (2.25)
12

In this notation, we can easily see that we have neglected one integral in
(2.23), namely exchange integral which arises from the requirement that
the wave function must be asymmetric with respect to the electron

exchange (arising from the spin functions):

~

l «| 1 * * 1 *
Ry =(viv; lglw,-%>=<w,-w, lzz—fw,-w,>=ﬂw,. Vi dvidy,

(2.26)
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(note that the bra vector will change a wavefunction into its complex

conjugate when transforming it to a real integral).
It follows that for a closed shell molecule. the HF electronic energy is (the
exchange energy had to be multiplied by a factor of one half, since only

half of the electrons are affected each time because of spin symmetry):

N=acc N-acc N
Egpa = X Iw,( -V?+2. Z— + D Z( i ,) (2.27)

i=l =l j=I

The energy can be calculated by an iterative procedure, where we evaluate
the energy as a function of the previously mentioned orbital coefficients.
The Hartree- Fock method optimizes these orbital coefficients to minimize
E 4 The best choice of coefficients (and thus, the best wavefunction) will
give the lowest energy, the closest one to the real solution of the
Schrédinger equation (this follows from the variational principle, which
shows that the Hartree- Fock method gives an upper bound to the exact

energy).

First, we have to look at the orbital energies:
Fy, = ey, (2.28)

, which are the eigenvalues of the one- electron Fock operator:

E=-V242. z_+ Z (2-7,-K;) (2.29)
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Although the equation looks similar to (2.27), it is nor the operator which

gives us the HF electronic energy because it acts on each orbital separately.
(2.29) is a purely one- electron operator (it involves the coordinates of
only one electron), but does depend on the smeared out wavefunctions of
all other electrons in the coulomb and exchange operator. Because of this.
we have to use an iterative procedure to optimize our orbitals, in turn
optimizing our energy.

The HF electronic energy (2.27) is then calculated. To express this energy
in terms of the eigenvalues of the orbitals (and the one- electron operator),

we compare (2.29) and (2.27):

N=occ N=occ N
Eype = 23 - Z( T ) (2.30)

=l j=1

The fact that we have to subtract the coulomb and exchange operators is
due to the double counting of both effects caused by summing over the
eigenvalues. For example, electron one interacts with the density of
electron two, and also vice versa.

Now we are ready to optimize the orbital coefficients. For this purpose, we

use the Roothaan- Hall equations which are closely related to (2.28):%"!
Ecs,-f:(ps =£; 2. ¢;0, (2.31),
¥ 5

where c; are the coefficients which were multiplied by the basis functions.

and €, are the eigenvalues of the Fock operator(2.29).



Multiplying this equation by ¢* and integrating gives:
Y cy(Fr 05 —€;S,)=0 (2.32)

The Fock matrix is determined by:

=, |[w" (-v +2. 2_}“, gé —K;)o,) (233)

where S is the overlap matrix:

S =(9.19,) (2.34)

For a nontrivial solution
det(F,, ¢, —£;S,,)=0 (2.35)

Thus, we start by calculating the Fock matrix using (2.30) and the overlap
matrix using (2.31). By diagonalizing both matrices, we solve (2.32) for
the eigenvalues, giving us improved coefficients c,. This improves the
molecular orbitals (2.28), and we repeat the procedure until convergence is
reached.

After we obtain the minimum of the electronic energy, we solve for the
nuclear energy. This is done until we have optimized both the nuclear and

electronic wavefunction.



2. Beyond Hartree- Fock

1. Mgller- Plesset Perturbation Theory

Energies calculated by Hartree- Fock theory are typicallv in error by about
1/2% to 1%, depending on the system under investigation. However, for a
chemist this error, usually on the order of several eV, is too large. The
only hope is that by calculating differences in energies for a chemical
reaction, the error is lower. For example, if we investigate the heat of
formation energy of the molecule, we subtract the energy of a molecule
from the energy of the atoms. This is the reason why Hartree- Fock
calculations are still widespread, especially for large molecules.

The major flaw of Hartree- Fock theory is the approximation that we take
the interactions between the electrons into account only in an averaged
way. Since electrons directly correlate and as a consequence they repel each
other, their motions are also correlated lowering the energy.

In Hartree- Fock there is actually some built- in electron correlation called
the exchange or Fermi hole. This arises from the antisymmetry of the HF
function, which vanishes when two electrons have the same spin and the

same spatial coordinates.
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We will define the lowering part of the energy as the correlation energy,
which is the exact nonrelativistic energy (and thus the solution of the
Schrédinger Equation) minus the Hartree- Fock energy.
In 1934 Mgller and Plesset'” proposed that we can treat the correlation of
the electrons in Hartree- Fock as small perturbation. This is a widespread
tool in Many- Body Theory to treat a presumably small perturbation of an
electronic system.
For a closed shell molecule, the unperturbed Hamiltonian is the Fock
Hamiltonian (2.29), which is summed over all electrons and denotes the
one- electron equations:
H, =N§CC{—V? +2-ZE&+N§CC(2~JU-KU)J (2.36)

i=1 a lia j=1

The unperturbed wavefunction is our well known Hartree- Fock
wavefunction W, . We write the new perturbed Hamiltonian
H,=Hy+1 V (2.37)

as a sum between HF and a small perturbation. The expanded wavefunction

and energy are as follows:

¥ o=, e 32 @

. (2.38)
E,=E®+1 EV+1*> E®@+..
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. while we call the ¥, and E, are the kth- order corrections to the

wavefunctions and energy.

When the series (2.38) is truncated at some order, we refer to the method
by the highest- order energy term allowed. For example, if we truncate
(2.38) after the second order, a MP2 calculation is obtained.

The perturbation term, V, represents the electron correlation energy

correction and can be written as:

N=occ N=occ i

i=l =l
.where V_, is the same as in (2.13), the exact electron- electron repulsion
energy.
[f we require ¥, to satisfy
(PO, ) =1 (2.40).
while having
(P e @) =1 (2.41)

, all higher- order wavefunctions are orthogonal to the zeroth- order
wavefunction if m=n (with m being another index). After substitution into

(2.40), the Schrodinger equation for kth order looks like:



—

Ho+d V)2 +1 " +22 v )
=(EY+A EQ+A EV +. ) B +2 ¥+ 22 ¥+ ) =
Ho ¥ +4 (VE© +H, W)+ A7 (A, p + )+

=B 0+ 4 (Y ¥,V +EY )+ (ER e +ES W +EQ WY )+
(2.42)

To solve (2.42), we first calculate the first order MP correction E‘" of the
ground state by using the zeroth- order (Hartree- Fock) wavefunction.
applying the Schrédinger equation on the perturbed problem and
truncating after the first- order correction in (2.42):

I:IO LP,(,”—E(,,O) LP’LI) =E£,“ \P,('O)_\“/l{,,(lm (2.43)

The next step is accomplished by multiplying our first- order terms to the

left by a <¥'?,, | zeroth- order bra vector as a constant:

(e ke - 2 057 )= 2 22 12) (o 1)
(2.44)

By substituting the very left term and by letting the zeroth- order
Hamiltonian act on the left side of (2.44) we get

B0 0 [0~ EL (1 ) =B (2 1) (0 [,
(2.45)

All terms on the left side are equal to zero. Using equations (2.40) and

(2.41) and setting m=n (which sets the Overlap matrix to unitary), we get:



EWD = <

‘P‘°)> (2.46)

By substituting (2.42) into (2.38) and using (2.28), it follows that:

EQ+ED =( Fl\{;(O)\ <l{,(0)|vl\{,(0)> qu’c; _N_i“Ni“(J ——K )
(2.47) - ~
which equals to the Hartree- Fock energy, E,, in (2.30) if our coefficient,
A. is equal to one.

To improve the Hartree- Fock energy, we must find the second- order
correction, E®. This depends on the first order- wave function and can be

obtained from (2.45) for m#n:

(0) _ g(0) <0)| (1
(Ew=E7 (e i) =,

V) (2.48)

, since the overlap matrix is now equal to zero.

[f we expand our first- order wavefunction in terms of the zeroth order
wavefunction and use the orthogonality of the wavefunctions which follows
out of (2.40) and (2.41), the wavefunction becomes:

0 SEUNR A
\{1, = z

! Q) Q)
m¥n En —Em

p (0) (2.49)

m

Now, we can evaluate the second- order energy correction from (2.42),
using the same method as before (2.43-2.46). (2.45) turns to:
E(O)<‘I’(O) “P(Z)>—E(O)<‘~P(O’ l l{,(z)>

= B2 (w0 [0 P (w0 [90) - (20 |G}
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By setting m=n, both the left side of the equation and the second term on

the right side vanish. Our energy correction changes into:
E(?.) =<L{1(0)t\7|\{1(l)> (251)
Substituting our wavefunction (2.49) into (2.51), the energy expression

because of the perturbation operator acting to the left becomes:

- |

2
= EO _EO (2.52)

Now we have to find the connection between both wavefunctions, the
energies and perturbation of the Hartree- Fock wavefunction.

It can be shown" (from Feynman diagrams) that the numerator in (2.52)
vanishes for all excitations except for double excitations. Thus we need
only consider these doubly excited wavefunctions to find the second- order

energy correction. A way to explain this is to think about the occupied
spin- orbital Hartree- Fock function ¥, (2.20) to calculate the energy. But

now, we rorate occupied and unoccupied (virtual) orbitals. The excitation
level denotes the number of orbitals rotated from the occupied into
unoccupied orbitals. In this case there are two rotated orbitals. We denote
the occupied orbitals as i and j, and the virtual orbitals as a and b, and we

get different eigenvalues (energies) from all possible combination of
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b (equation 2.28) and

Ji En(m o g

{

orbitals. Hence, by setting ¥,'” to ¥

E,"tog, +¢,-¢;, (2.52) tumns into:

9

(P, ¥, |%]\P,.\P,->—(‘Pa‘f’b |£“*’j‘{’i>

, ) o  N=occN-I|
E?=5% Y (2.53)
=a+la=N+1 i=j+] j=I € tE; —€, &,

This leads to the desired term. Using this term, we can calculate the energy
after the MP2 method by adding E® to the HF energy. The calculation of
(2.53) is actually achieved by rotating the molecular orbitals, since it also
includes excited orbitals. This new term (2.53) now includes electron
correlation. Theory pertaining to the higher- order perturbation methods is
neglected, because we did not use it for our applications. [t can be shown,
as we include higher and higher order perturbation terms, that Mgller-
Plesset Perturbation Theory becomes more and more accurate. Calculations
indicate that “The MP series will converge to the exact limit of the
Schrédinger equation for most calculations™. "'

Applications of this method were first started in 1975.'%"

The MP2 method generally includes about 90% of the correlation energy.
giving almost chemical accuracy for many calculations if a sufficiently

large basis set (see section 3.1 about this) is used.



2. Coupled- Cluster Theory

Coupled- Cluster Theory was developed in 1958 by Coester and
Kimmel.'*"

This is a different approach, which also converges to the nonrelativistic
solution of the Schrédinger equation if enough terms are included, and is

usually quite accurate, if singles and doubles are included (CCSD).

[n this case, we perturb the Hartree- Fock ground state wavefunctions:
p=ely® (2.54),

where the operator in the exponential is known as the Cluster- Operator is
given in (2.55).

T=T,+T,+T,+..+T, (2.55)

The different operators that evolve out of the cluster- operator are one-

particle excitation operators. two- particle excitation operators and so on:

R 0) = n=0cc
_ aysda
T, = Y Y'Y
a=n+l =l
oo o n=occn—|

LY?"=% Y X e (2.56)

These operators act to excite one occupied spin- orbital and replace it with
a virtual one. The t's are numerical coefficients, whose value depends on

both the occupied and virtual orbitals affected. As in perturbation theory
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we are rotating two orbitals. Assuming that we can separate the operators.

we can also write:
‘P=eT‘eT3e"' eT"‘P(O) (2.57)

and expand each exponent with a Taylor series:
eT—1+'i'+I—-+—+ —i—- (2.58)
- 2! P )

where just the one- particle excitation operator is included. We thus take
care of not only single- particle excitations but also double, and so on.

since:

+ ...
3! (2.59)

Although we include those excitations, they are not included strictly but
only as much as they are treated by the exact treatment of the first term of
the expansion and its coefficient- thus, they are not included in an exacr
treatment. They might not include any significant amount of the correlation

energy. From (2.54) the Schrédinger equation gives us:
HeT|W,)=EeT|,) (2.60)
, since our wavefunction is now perturbed. By moving the right side of the

equation to the left side and multiplying by the different bra- vectors (for

zero- single and double excitation functions), we get:
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(W, |(A- E)[1+Tl+ Az‘!z +T, ]] ¥,)=0

(we|(a E)(l+’i‘l+ L’ +E+’I“2+T1T7 ]I ¥,)=0

<‘P5b (H—E)(Hfﬁ'z; +E!3 +E: +'i"2+%!2 +T1T2+T2‘—!2T3 J] ¥,)=0
(2.61)

Since the matrix elements of the Hamiltonian are zero if Slater-
determinants differ by more than two spin- orbitals (following from the
Condon- Slater rules), the higher order terms of the operators vanish.
From the single- and double excitation functions we can now evaluate our
two coefficients in (2.56). Substitution into the first term leads to the
energy of the system (since we have two unknown and three equations).
Note that the terms in (2.61) are extremely complicated, since they involve
all possible kinds of excitations. Those equations give correct single and
double excitations tor the correlation energy of the wavefunction and also
include a large amount of the correlation energy of the quadruple
excitations. The most important term in the error would be the triplet-
term, thus this term is added in most calculations by normal perturbation
theory, which is CCSD(T). This method usually gives chemical accuracy

(the errors are usually less than 1 kcal/mol).
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2. Density Functional Theory

I. The Local Spin Density Approximation (LSDA)

1. General remarks

First of all, we would like to get a general idea of what the name “Density
Functional Theory” means. The definition of a functional is actually a
function that converts another real function into a number Flf(x)]=y. So we
just take the electron probability density, which was defined in equation
(2.2), and try to calculate the ground state energy of the system. Density
Functional Theory (DFT) does not deal with complicated and unobservable
wavefunctions, but with the electron density. The hope is that there is
enough information left in this function. The rationalization for using the
electron density instead of the wavefunction actually came from Hohenberg
and Kohn™, who stated a theorem that the necessary information is left in
the electron density (dependent only on r in the exchange- correlation part
of the energy). Instead of dealing with a N- dimensional problem (with N
being the number of electrons), we have only a six- dimensional problem
(having the density dependent on r, and r, in the coulomb energy), making
it computationally feasible for much larger calculations than other

Quantum Chemical methods. The drawback is that we do not deal with real
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orbitals anymore and we do not know how to improve this theory

consistently. In the above mentioned methods, we simply had to include
more orbital rotations (more virtual orbitals) to get a consistent
improvement of the description of the electron correlation. With DFT
however, we lack this information. It is not surprising that Density-
Functional Theory was developed out of solid- state physics (the theory of
quantum liquids) since a solid is a formidable problem for theoretical
calculations and predictions. Since it is not known if an analytical or even
mathematical formulation of the functional that is supposed to describe the
nonclassical energy (that is the exchange and correlation energy) exists (or
how it is supposed to look), we are dealing with a very difficult, but also
very challenging problem. We will give an overview about some

descriptions and advancements of DFT in the next chapter.

2. Hartree- Fock

If we recall Hartree- Fock Theory from (2.I) , we can describe the

probability density by equation (2.2). In the Dirac notation, its operator is:

N=occ

7= 2| XY (2.62)
i=1

, while the density matrix itself looks like (the notations arise from (2.20)):
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N=occ

r(xi.x,)= Z‘P (x1)¥ (%) (2.63)

We can describe Hartree- Fock Theory completely in density matrix form
(which includes only the occupied spin orbitals)** such that equation

(2.27) now becomes:

(2.64)

We then consider at the derivative of the energy with respect to the density

matrix:

9 Egply] (

8y(x’ x;)

+I

,where the 0y terms come from the fact that we had to introduce dx” into

Ly s Ze ]a Y(xi=x,)
2 ara(xl)

Y(x5.%4)dx, 9 y(x] xl)—-,i—f;—l—y(x'z.xz)dxédxv

our equations.

(2.65) can be shown to be equal” to our Fock operator in (2.29): The
eigenvalues of our orbitals are simply given by the functional derivative.
We would like to describe (2.64) in terms of the spinless density matrix p
(as opposed the spin- density matrix ¥ ), which is not dependent anymore
on the electron spin function(s), o,(s), but only on the spatial distance r.

Note that we can describe every term in (2.64) except for the exchange






