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ABSTRACT

COASTAL LITHOSOME EVOLUTION AND PRESERVATION DURING
AN OVERALL RISING SEA LEVEL: EAST TEXAS GULF COAST AND
CONTINENTAL SHELF
by
FERNANDO PASCUAL SIRINGAN

Present coastal systems along the east Texas coast evolved during the past
3.5 ky of relative sea-level stillstand following a rapid sea-level rise 4 ka.
Closure of proto-Galveston Bay, caused by spit accretion of Galveston Island
and Bolivar Peninsula, formed Bolivar Roads approximately 3.3 ka. Increased
tidal prism and entrenchment over the Trinity River incised valley led to inlet
stabilization and intensification of tidal influence.

The present shoreface and inner shelf package is characterized by a paucity
of storm deposits. Strong along-shelf storm currents, low sediment supply, and
low effective accommodation space in the region are unfavorable for the
preservation of storm beds. Higher sand supply during the early establishment
of the present coastal lithosomes resulted in a greater occurrence of storm beds
lower in the section. Amalgamated storm deposits on the east Texas shelf are
associated with reworked coastal lithosomes. |

Pods of tidal-inlet, tidal-inlet/spit, and tidal-delta deposits mark previous
shoreline positions on the continental shelf. Their distribution mimics the along-
strike variation of the present coastal systems, defines six relative sea-level
stillstands, including the present, during the past 10.2 ky, and supports the
model of a step-like sea-level rise. The seismic architecture of pre-8 ka coastal

lithosomes provide evidence for greater tidal influence, greater accommodation




111
space, and higher sedimentation rates compared to the present.

The preserved coastal lithosomes indicate that the depth of shoreface
ravinement decreases with decreasing shelf gradient, increasing rates of sea-
level rise, and increasing sediment supply. Better preservation within incised
valleys results from greater accommodation space and the soft valley-fill that
allows incision of the inlets beyond the depth of shoreface ravinement.

The mechanism of shoreline translation (discontinuous erosional shoreface
retreat, transgressive submergence, or in-place drowning), is a function mainly
of shelf gradient and rate of sea-level rise. Gentle shelf gradient and rapid sea-
level rise favor transgressive submergence. In regions with steep shelf
gradient, aggradation may produce stratigraphic signatures consistent with in-

place drowning and discontinuous erosional shoreface retreat.
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PREFACE

This Ph.D. dissertation is composed of four chapters written as separate
manuscripts to be submitted for publication, therefore, some duplication was
unavoidable. The first and second manuscripts examine the stratigraphy and
architecture of extant coastal systems. Emphasis is placed on tidal inlet/tidal
delta and lower shoreface deposits because they have the highest preservation
potential among coastal lithosomes. The first manuscript relates the
development of a tidal inlet/delta system to the evolution of adjacent coastal
lithosomes. The second manuscript focuses on the shoreface and inner shelf
development in relation to storm sedimentation. Results from these studies
provide some insights into: 1) the factors influencing formation and
modifications of coastal and inner shelf systems; and 2) the seismic facies,
seismic architecture, and lithofacies most likely to be encountered as preserved
sequences on the continental shelf.

The third manuscript documents the occurrence, distribution, state of
preservation, and nature of Holocene preserved coastal lithosomes on the
continental shelf. The distribution and state of preservation of coastal
lithosomes are used to define paleoshoreline trends (altitude and location)
correponding to sea-level stillstand events during the overall Holocene
transgression. Variations in the architecture and degree of preservation of the
preserved sequences provided insights into: 1) the individual impact of and
interplay between the factors that influence the formation and preservation of
coastal lithosomes; and 2) temporal and spatial variations of these factors.

The final manuscript, presented in the fourth chapter, documents the
morphology of the ravinement and pre-transgressive surfaces and the nature of

two of the several shelf sand banks. The efficiency of shoreface ravinement,




XV

sediment budget during transgression, the controls on the mechanism of
migration of coastal lithosomes across the shelf, and the resultant shelf sand
bank formation are examined. These are then related to the development of
present coastal systems.

The submitted manuscripts will have John Anderson as co-author; the many
hours of discussion with him led to the development and refinement of the ideas
presented in these papers. Also, his patience in sorting through jumbled

thoughts led to their present readable form.




iINTRODUCTION

Shorelines have migrated across the world's continental shelves and inland
seas several times throughout earth's history. Shoreline migration is linked to the
rise of sea level during the last 18 ky. As the environments of coastal deposition
shifted landward, deposition of a transgressive sequence of sediments occurred
across the continental shelf. Several important questions related to this shift can
be addressed: 1) how do the present coastal lithosomes fit into the overall
transgression?; 2) what is the sedimentary record of the transgression on the
continental shelf?; 3) what are the factors that influence coastal lithosome
preservation?; and 4) are there differences between the types of shorelines and
the sedimentary sequences that developed during migration of the shorelines
across the shelf? Answers to these questions would improve our understanding
of: 1) the nature of Holocene sea-level rise; 2) the character of the induced
coastal retreat; 3) the influence of sea-level rise on coastal and estuarine
evolution and inner shelf sedimentation; and 4) the lithofacies and facies
architecture of estuarine, coastal, and inner shelf lithosomes and processes.

The study area is within the northern Gulf of Mexico, along the east Texas
coast and adjacent continental shelf (Fig. 1). It extends from Sabine Pass at the
Texas-Louisiana border to San Luis Pass at the western end of Galveston Island,
and includes the inner to middle continental shelf, coastal, and estuarine
systems. The east Texas coast and adjacent continental shelf is an excellent site
to address the questions cited above for several reasons. First, the present
coast provides a variety of well-studied lithosomes that may behave differently in
response to sea-level rise and that may serve as analogues for preserved
sequences on the shelf. Some of these lithosomes include chenier plains (Gould

and Mc Farlan, 1959; Byrne et al., 1959; Johnson, 1979), barrier islands (LeBlanc




and Hodgson, 1959; Bernard et al, 1959; 1970; Morton and McGowen, 1980),
tidal-inlets and tidal-deltas (Eyer, 1984; Israel et al., 1987); shoreface deposits
(Bernard et al., 1959; 1970; Williams et al., 1979), wave-dominated deltas
(Bernard et al., 1970; Bartek et al., 1990; 1991), and bay/estuarine systems
(Kane, 1959; Rehkemper, 1969; Smyth, 1991, Anderson et al., 1991a, 1991b).
Second, incised valleys on the continental shelf, previously mapped by Nelson
and Bray (1970), Pearson et al. (1986), and Thomas (1990), have the greatest
potential of yielding preserved coastal lithosomes (Kraft et al., 1987; Belknap and
Kraft, 1981, and 1985) as documented in the study area by Thomas (1990).
Third, studies of Holocene sea-level changes in the region may provide a
reference for the ages of sea-level events (Curray, 1960; Rehkemper, 1969;
Nelson and Bray, 1970; Frazier, 1974; Thomas, 1990) (Fig. 2). Finally, varying
shelf gradient along the Texas coast (-40 m water depth), from 0.21 m/km in the
east to 0.49 m/km in the west, provides an opportunity to evaluate the role of
shelf gradient in the evolution, preservation, and migrational mechanism of

coastal lithosomes.




CHAPTER 1

SEISMIC FACIES, ARCHITECTURE AND EVOLUTION OF THE
BOLIVAR ROADS TIDAL INLET/DELTA COMPLEX,
EAST TEXAS GULF COAST



CHAPTER SYNOPSIS

The seismic facies, facies architecture, and stratigraphy of Bolivar Roads
tidal inlet and tidal delta deposits and their relation to the development of
adjacent coastal lithosomes are examined using high resolution seismic
profiles, vibracores, and bore hole descriptions. The Bolivar Roads tidal
inlet/delta complex formed approxirﬁately 3.3 ka due to spit accretion across the
baymouth following a rapid sea-level rise 4 ka. An increase of tidal prism
through time and entrenchment of the tidal inlet over the Trinity River incised
valley caused inlet stabilization and intensification of tidal processes on the tidal
inlet/delta complex.

The tidal inlet facies exhibits channel-stacking and cut-and-fill structure.
Stacked clinoforms dip westward across the inlet. The spit/inlet facies is
characterized by oblique-tangential clinoforms that build outward and deepen
from the valley edge toward the valley center. The flood-tidal delta facies has a
base that abruptly shallows bayward. As the flood-tidal delta facies thins
bayward, it interfingers with bay sediments. The flood-tidal delta inlet-proximal
region exhibits channel cut-and-fill with an overall channel stacking pattern. On
the seaward side, the channels have a trough-like geometry. Bayward, the
channels broaden and shallows. The channels exhibit a prograded-fill pattern.
The ebb-tidal delta facies exhibits gently inclined clinoforms prograding over
the ravinement surface.

The tidal inlet deposits are composed of sand, shell, and mud interbeds.
Sand and clay interlaminations are ubiquitous in the tidal-deltas. Sand and
shell beds are common in the inlet-proximal regions. Overall, the Bolivar

Roads tidal inlet/delta complex is mud-dominated as a result of a high influx of

fine sediment into the bay.



INTRODUCTION

High resolution seismic (3.5 kHz and uniboom) data, coupled with vibracore
and borehole data, allow 3-dimensional study of a tidal inlet/tidal delta complex
(Fig. 1.1). In this paper, the seismic facies, lithofacies, facies architecture, and
stratigraphy of the Bolivar Roads tidal inlet and tidal delta deposits are
examined. Their development is related to the overall evolution of Galveston
Bay and adjacent Galveston Island and Bolivar Peninsula.

Tidal inlet and inlet-related deposits may account for 30-50% of Holocene
subsurface strata of several modern barrier islands (Moslow and Tye, 1985).
Their high preservation potential (Belknap and Kraft, 1981; 1985) makes it
probable that they represent a significant percentage of the facies preserved
within coastal systems in the rock record (Barwis and Makurath, 1978;
Boothroyd, 1985). Thus, recognition of inlet and inlet-related sediments in
subsurface and in outcrop is extremely important. An understanding of
sedimentary characteristics and variations of inlet-fill sequences in modern
environments facilitates identification of ancient equivalents and the processes
responsible for their deposition, and aids in prediction of lateral facies changes

within subsurface marine shoreline sand-bodies.

Coastal Processes
The study area is located along the east Texas coast (Fig. 1.1). ltis
characterized by dominantly diurnal tides with a mean tidal range from 45 to 60
cm (Morton and McGowen, 1980). Off Galveston Island, in water depths of
approximately 5 m, mean significant wave height is 43 cm and mean wave
period is 6 s (Thompson, 1977). Wave heights are less than 1 m for 77 % of the

year (Hall, 1976). These parameters fall under the mixed energy, wave-
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7

dominated field of Davis and Hayes (1984). The configuration of the east Texas
shoreline, coupled with prevailing southeast winds and wave approach,
commonly produces southwesterly littoral drift along the northern and western
Texas coast (Lohse, 1955). During winter months, relatively high-velocity winds
with strong northerly components are common. They are associated with cold
fronts that come from the northwest and move southeast along the Gulf Coast.
An average of 47 cold fronts pass through the Texas coast each year (Henry,
1979). Strongest winds occur during tropical storms and hurricanes that strike
the Texas coast about once every 1.5 years (Hayes, 1967).

Bolivar Roads, the largest tidal inlet on the Texas coast, is the main tidal
pass to the Galveston Bay system (Galveston, Trinity, East, and West bays) (Fig.
1.1), the largest lagoonal estuary on the Texas coast. It is about three
kilometers wide and historically had a maximum depth of almost 16 m (Mason,
1981; Eyer, 1984). Jetty construction reduced its depth to a maximum of 7 m.
Now, it is maintained by dredging to a minimum depth of 11 m (Mason, 1981).

The mean tidal range in the Bolivar Roads area is 43 cm (Eyer, 1984). Tide
measurements since 1852 indicate no net increase or decrease in mean tidal
range (Mason, 1981). The average maximum tide velocities are 140 cm/sec for
ebb and 94 cm/sec for flood (Eyer, 1984; Harwood, 1973). Harwood (1973)
calculated lower tidal current velocities for Bolivar Roads prior to jetty
construction. Tidal flow segregation (different flow pathways during ebb and
flood flows) occurred before and after jetty construction, but is more evident in
the pre-jettied state (Fig. 1.2).

The average diurnal tidal prism passing through Bolivar Roads is
approximately 3.0 x108 m3 (Mason, 1981), or 85% of the tidal prism of the

Galveston Bay system (Fisher et al., 1972). During a cold front passage, the




Figure 1.2. Morphology of Bolivar Roads tidal inlet and tidal deltas.
a) Present morphology (bathymetric data is from NOAA 11326, 1976 edition).
Boxed area denotes approximate area covered on Fig. 1.2b. b) 1867
morphology prior to man-made structures (from Eyer, 1984). Tidal current flow

directions are indicated by arrows (compiled from Hall, 1976 and Eyer, 1984).
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tidal prism can be five times greater (Mason, 1981); during hurricanes it can

increase by a factor of 11 (Corps of Engineers, 1942 in Eyer, 1984).

Geomorphic Features

The natural morphology of the Bolivar Roads tidal inlet and associated delta
complexes, outlined by bathymetric contours, show well-developed ebb- and
flood-tidal deltas with comparable areal extents (Fig. 1.2b). The present
morphology resulted from human modifications (Fig. 1.2a). Pelican Island, a
natural emergent portion of the flood-tidal delta, was enlarged with dredged-
spoil. Bayward extension of the bifurcating channels in the flood-tidal delta may
be due to enhanced scouring caused by increased velocities and decreased
sediment input from the Gulf of Mexico into the bay. Eyer (1984) and Paine and
Morton (1986) present a summary of anthropogenic alterations and ensuing
morphologic changes within the tidal deltas and tidal inlet.

Stunted, drumstick-shaped terminations of Galveston Island and Bolivar
Peninsula at Bolivar Roads (Fig. 1.2a), and a robust pre-jetty ebb-tidal delta
(Fig. 1.2b) are features normally associated with mixed-energy tide-dominated
shorelines (Fitzgerald et al., 1984). A robust ebb-tidal delta at Bolivar Roads
(Fig. 1.2) results from a large tidal prism, ebb-dominance (ebb current velocities
can be 33% to 50% greater than flood currents), and frequent frontal passages
that push water out of the bay (Hall, 1976; Eyer, 1984). Tidal current dominance

over wave energy helps to confine the inlet, resulting in its stability (Price, 1952;

Mason, 1981; Eyer, 1984).
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Surface Sediment Distribution

A surface sediment distribution map generated by White et al. (1985) shows
that deeper portions of the inlet are covered with sandy mud, while shallower
regions generally are covered by sénd with varying proportions of clay and
shell. Muddy and shelly sand also occurs in the bayward throat of the inlet and
its bifurcating channels. Sandy muddy shell to shelly sand covers the flood
ramp. Muddy sand, the dominant surface sediment in the more proximal region
of the flood-tidal delta, is replaced by sandy mud in the more distal areas.

The present ebb-tidal delta exhibits asymmetry in surface sediment
distribution; it is sand-dominated southwest of south jetty and mud-dominated
northeast of north jetty. The asymmetry reflects the difference in the wave
energy expended on either side of the jetties. Wave statistics show breaker
heights off Galveston Island consistently larger than those off Bolivar Peninsula
(Hall, 1976). The jetties attenuate and block waves from the south and
southeast, protecting the area northeast of the north jetty. The ebb-delta itself
may act as a protective barrier on its eastern side. A two-fold increase in shelf
gradient off Bolivar Peninsula, as compared to offshore Galveston Island, is also
a contributing factor. Another component influencing asymmetric sediment
distribution is the amount and direction of sand input. Sediments from the
northeast are derived from bays and eroding clayey segments of the coastline,
while sediments from the southwest, brought in during longshore current

reversals, consist of sands from the eroding segments of Galveston Island and

the Brazos Delta.

Late Holocene Sea-Level Changes and General Stratigraphy
The estimated mean regional historical sea-level rate of rise for the Gulf of

Mexico is 0.23 cm/y (Gornitz and Lebedeff, 1987). The mean global eustatic
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rise ranges from 0.12 cm/y (Gornitz and Lebedeff, 1987) to 0.18 cm/y (Douglas,
1991).

The historical subsidence rate for the Texas coast (Galveston Area),
calculated from tide gauges, is 0.62 cm/y for the period between 1908 to 1980
(Penland et al., 1987). An increase in subsidence rates to 1.17 cm/y during the
early 1960's (Swanson and Thurlow, 1973; Penland et al., 1987) is attributed to
fluid withdrawal (Gabrysch and Bonnet, 1975; White et al., 1985). Compaction
of the valley-fill and barrier sediments should be a major component of the
measured subsidence. Thus, estimates of subsidence rates from Galveston
Island may not be applicable to the entire east Texas coast because the tide
gauges are located above the Trinity River incised valley (Fig. 1.3 and 1.4).
Sediment loading of the valley fill by Galveston Island and Bolivar Peninsula
and tidal delta deposits contribute to compaction of the valley fill. A long-term
subsidence rate for the Texas inner continental shelf is 0.01cm/y or less
(Winker, 1979; Paine, 1991). This probably is more in line with subsidence
rates in the interfluve areas of the shelf. Overall, the east Texas coast is
retreating in response to relative sea-level rise (Morton, 1977; Paine and
Morton, 1989).

Bolivar Roads and Galveston Bay formed above the Trinity River incised
valley (Fig. 1.3 and 1.4). The valley was last reincised during oxygen isotope
Stage 2 lowstand (Thomas, 1990), when sea-level fell to approximately -126 m
below its present leve!l (Fairbanks, 1989). The valley thalweg lies
approximately 55 m below present sea level. Offshore, the depth of incision of
is 35 to 40 m below the sea floor (Thomas, 1990). Back-filling of the incised
valley occurred during the Holocene transgression. Under Bolivar Roads,

fluvial sand fills one-third of the valley. Overlying estuarine sediments contain
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Figure 1.3. Structure contour map of the Holocene-Pleistocene surface
depicting the trace of Trinity River incised valley beneath Galveston Bay and
adjacent offshore areas (modified from Smyth, 1991). Tide gauges used by
Swanson and Thurlow (1973) to calculate the rate of relative sea-level in the
Galveston area are marked (a) Pleasure Pier and (b) Galveston Channel Pier
21.
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Figure 1.4. Cross-section from Bolivar Peninsula across Bolivar Roads to
Galveston Island showing valley-fill stratigraphy and superposition of Bolivar
Roads over the Trinity River incised valley based on borehole data from the U.
S. Army Corps of Engineers (modified from Morton and McGowen, 1980).

Figure 1.1b shows the profile location.







