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Numerical Simulation of the Jovian Torus-Driven Plasma Transport

by Yong-Shiang Yang

Abstract

The Rice Convection Model has been modified and applied to the study of the Jovian
magnetospheric system, which is interchange unstable. The basic interchange instability of
the To plasma torus is opposed by pressure gradients in the energetic particles outside the
torus. Many simulations have been performed for cases where the overall system is inter-
change unstable under the ideal-MHD assumption E + vxB = 0. For such cases, the torus
breaks up predominantly into long fingers unless the initial condition strongly favors some
other mode. The ends of the fingers tend to be rounded, and they are connected to the main
torus by tails that thin rapidly with time if the torus runs out of plasma. Our calculations
place an upper limit of ~1Ry on the average distance between fingers. For an initially
asymmetric large-scale torus, fingers generally form on a time scale shorter than the one on
which the heavy side of the torus falls outwards. However, the fingers form predomi-
nantly on the heavy side. Galileo may observe such finger features outside the Io torus, at
L=7to15.

Additionally, in this thesis, drift-wave theory has been used to investigate the effect of
energetic (KeV or MeV) particles on the Io torus plasma transport. It is shown that the
MHD stability criterion, where the interchange motion would be completely stabilized if the
energy density of the hot stabilizing plasma is greater than or equal to 3/4 of that of the cold
unstable plasma, no longer holds owing to the gradient/curvature drift of the energetic parti-
cles. This differential-drift effect, which is a departure from the ideal-MHD and frozen-in

flux, may play a significant role in plasma transport in the Jovian magnetosphere.
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Introduction

1.1  Torus-driven plasma transport in the Jovian magnetosphere

Jupiter has the strongest magnetic field of all planets in the solar system with a surface
magnetic strength about 14 times of that of the Earth. Data gathered from early flybys of
the Pioneer spacecraft indicate that the Jovian magnetosphere can be divided into three dis-
tinct regions. The intrinsic magnetic field of Jupiter dominates the inner magnetosphere, a
region that extends to about 20 R;. In the middle magnetosphere, from about 20 R;j to 60
R}, the magnetic field is severely distorted by trapped plasma. The outer magnetosphere
beyond 60 Ry shows significant irregularities of the planetary magnetic field in both magni-
tude and direction [Yeates et al., 1985]. This is the region where the solar wind and
Jupiter’s magnetic field interact. In the Earth’s magnetosphere, the solar wind is the driv-
ing force for magnetospheric convection, the large scale circulation of plasma within the
system. However, the solar wind plays a less important role in plasma circulation in the
Jovian magnetosphere. Most phenomena in the Jupiter’s magnetosphere are driven by the
kinetic energy of the planet’s spin. Jovian magnetospheric convection is driven by the
powerful centrifugal force of Jupiter’s spin [e.g., Hill and Dessler, 1991].

Jupiter has 16 satellites. The most interesting one from a magnetospheric viewpoint is
To, located at about 6 Jupiter radii. Iois a volcano-active satellite that releases neutral
gases, mainly SO,. Some of these neutral gases are knocked off Io by energetic particle
bombardment. The bombarded material has sufficient velocity to escape from lo. This es-
caping material is then ionized by additional particle bombardment. A plasma torus thus
forms in the vicinity of Io's orbit.

Approximately 1 ton of the material (mainly SO,) escapes from Io per second and is
injected into the plasma torus, which is the main source of plasma for the Jovian magneto-

sphere. Because of Jupiter’s rapid spin, the torus plasma is transported through the Jovian
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magnetosphere by interchange instability: outward-moving relatively dense magnetic flux
tubes are replaced by an inward-moving relatively empty magnetic flux tubes. The iono-
spheric conductance regulates the magnetospheric plasma transport process (see e.g.,
Huang and Hill, 1991).

Three major theoretical models of Jovian plasma transport have been proposed. These
models are based on magnetohydrodynamics (MHD), in which particles in a small region
are treated as a fluid element, a mechanical entity to which Newton’s laws of motion and
Maxwell’s equations apply. These three models are: (1) the eddy diffusion model, in
which a small-scale, turbulent interchange instability leads to a net outward mass flux; a
small outward-moving, relatively dense magnetic flux tube is replaced by an inward-mov-
ing, relatively empty magnetic flux tube [Siscoe and Summers, 1981; Summers and
Siscoe, 1985]; (2) the corotating-convection model, involving a large scale circulation pat-
tern that corotates with the Jovian magnetosphere and is produced by the Jupiter’s longitu-
dinally asymmetric magnetic field [Hill et al., 1983; Hill et al., 1981]; (3) the transient con-
vection model, in which small-scale flux tubes of plasma break away and fall outward
through a less dense background [Pontius et al., 1989].

All three models rely on interchange instability in Jupiter’s centrifugal-force field to
drive the plasma motion. However, the three models emoody different assumptions about
the nonlinear development of the instability.

None of these models is a complete theory. For example, in the eddy diffusion model,
a net radial transport results from random small-scale motions. In the transient convection
model, small, mass-loaded flux tubes break away from the torus and fall outward through a
less dense background, remaining well-defined as they travel large distances. Neither of
the above two models considers effects of large-scale longitudinal variation of plasma pa-
rameters. Alternatively, the corotating-convection model neglects small-scale effects en-

tirely, and considers only large-scale flows. Each of these models makes a different as-
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sumption about a basic form of the nonlinear development of the interchange instability in
Jupiter’s magnetosphere, including the dominant length and time scales. Each model then
derives different theoretical consequences.

The purpose of this thesis is to use the Rice Convection Model (RCM) to solve the
equations of motion of the torus plasma as the intérchange instability develops nonlinearly,
and thus to determine the dominant nonlinear form of the instability theoretically, for differ-
ent assumptions about the initial state of the torus. Our computations indicate that the non-
linear development usually does not correspond accurately to any of the three simple
models, although we can find certain features of the simulations that agree qualitatively

with each of the three models.

1.2  Numerical simulation of the Jovian magnetospheric plasma transport

The Rice Convection Model (RCM) is a well-developed model for the study of the
Earth's inner and middle magnetosphere. Rather than starting from scratch to develop a
model of plasma transport in the Jovian magnetosphere, we have chosen to develop a
Jovian version of the RCM, which we call the RCM-J.

The RCM deals with the slow-flow region of the Earth’s magnetosphere. It treats the
motion of magnetospheric plasma and its coupling to the ionosphere. The divergence of
drift currents in the magnetosphere requires closure within the conducting ionosphere
through Birkeland currents. The electric field that drives the ionospheric currents also
drives plasma convection in the magnetosphere. The RCM calculates the plasma distribu-
tion, current pattern, potential pattern, and convection electric field based on initial and
boundary conditions. In the RCM, the coupling between the ionosphere and magneto-
sphere is very important. Because of this coupling, the three-dimensional problem reduces
to two parallel two-dimensional computations, one in the ionosphere and one in the magne-

tosphere.
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Although Jupiter’s magnetosphere is energetic and complex, magnetosphere-iono-
sphere coupling is important in controlling the flow of plasma from the Io plasma torus. In
addition, in the inner Jovian magnetosphere, the condition that the plasma flow speed is
much less than the fast mode speed is well satisfied [Dessler et al, 1990]. Therefore, there
are important similarities between the magnetospheres of the Earth and Jupiter, similarities
that justify the development of the RCM-J for Jupiter.

After giving a general description of the RCM, we describe in Chapter 2 the modifica-
tions that have to be made in the RCM, such as including the centrifugal drift current in the
main code and modifying the magnetic field and jonospheric conductance as input models.
We apply the RCM-J to a simple torus configuration that can be treated analytically. The
numerical result of the RCM-J and analytical calculation agree well for long-wavelength
disturbances. Comparisons for short-wavelengths provide a quantitative measure of nu-
merical error due to finite grid spacing.

Chapter 3 describes the setup and results of our first series of runs. Based on Voyager
observations, we assume a —2.2 power law in the plasma content (number of particles per
unit magnetic flux) for the initial-condition cold plasma distribution (see Baganal and
Sullivan, 1981). Energetic particles (KeV and MeV) are not considered. The simulation of
cold plasma in the first series of runs shows that, if we start with a torus that is longitudi-
nally symmetric except for a small-amplitude ripple, the torus breaks up into fingers. On
the other hand, if we start with a large-amplitude ripple, then we tend to get a single large
finger of outgoing plasma at the peak of each ripple; however, smaller fingers develop in
other locations as well. The time scale (~40 hours) for the interchange motion is short
compared to the inferred plasma torus ion lifetime (~60 days) [Schneider et al., 1989] in the
Jovian magnetosphere. We attribute this discrepancy to our neglect, in this first series of
runs, of energetic particles (KeV and MeV), which have been observed in the outer torus

by both Voyager 1 and Voyager 2 [Krimigis et al., 1981].
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In general, the Jovian magnetospheric phenomena are not axially symmetric. Nearly all
are organized in the System III coordinates (the system that is fixed relative to the radio
emissions from Jupiter). The region around 230° System III longitude is known as “the
active sector” (see Dessler, 1991). Within the active sector, the torus has a temperature
maximum that produces a “ribbon” of hot plasma [Trauger, 1984], an ion concentration
maximum [Pilcher and Morgan, 1980; Trafton, 1980; Trauger et al., 1980], and sporadic
outward extensions of the plasma torus [Pilcher et al., 1981].

Thus we carried out a second series of runs, in which we expanded our simulation re-
gion to a 2x local time range with L = 5 to 20 (boundary between the inner and middle
magnetosphere). In this second series of runs, effects of energetic plasma and torus asym-
metry were considered. Chapter 4 describes this second series of runs, including run set-
ups, an analytic check of an initial test, and results of the full series.

The run results show that, for an asymmetric cold plasma torus, small structural fingers
form and develop before the heavy side of the plasma torus falls outward very far. In the
simulations, these fingers tend eventually to develop into nearly elliptic blobs that are con-
nected back to the torus by thin tails. If there is enough plasma in the torus (big reservoir),
fingers extend far out into space before they are pinched into blobs. If there is not enough
plasma (small reservoir), fingers develop into blobs before they get very long. The scale-
size of these fingers, to some extent, is determined by the distance scale on which the in-
variant density of plasma in the torus falls off. Our calculations can place an upper limit of
~1R; on the average distance between fingers, but our finite grid spacing precludes our
placing a lower limit. '

Additional ideal-MHD simulations have been carried out with hot plasma included. The
hot and cold particles are both assumed to ExB drift. Observational data from Voyager 1

and 2 shows that outside L =9, the hot KeV and MeV plasmas are far more stable so that if

one uses ideal-MHD theory, the cold plasma could not escape from the Io torus. However,
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the observational uncertainties are huge. We could construct the hot plasma in such a way
that instability can be introduced. Therefore, the simulation results strongly depend on the
input setup for the energetic particles.

For example, if we choose the input scheme for the energetic particles in such a way
that hot and cold plasmas are borderline MHD stable everywhere, then by adding a cold
asymmetric component to introduce instability, we can get the results that are basically
close to those from the simulation of the cold asymmetric plasma alone. However, the hot
plasma regulates the number of fingers, and subsequently the number of blobs because of
the very nature of the stabilizing effect of hot plasma. The fingers also tend to become
thinner .

The most straightforward interpretation of the observational data from Voyager 1 and 2
implies that the hot plasma in the o torus is usually ideal-MHD stable. That would seem to
leave the cold torus plasma with no means to get out of Jupiter’s magnetosphere. How-
ever, the torus plasma obviously escapes at an average rate that balances the source rate.
There must be a mechanism that allows cold plasma to escape Io’s plasma torus. By using
two-fluid drift-wave theory, we find that the Jovian Io torus system is actually unstable to a
generalized interchange process even if it would be stable within the approximation of
ideal-MHD. This is due to the fact that the hot plasma is only partially frozen to the mag-
netic field line. Chapter 5 is devoted to a description of the assumptions and calculations
that lead to the conclusion of drift-wave instability.

The thesis ends with conclusions and suggestions for future research (Chapter 6).
Chapter 6 also discusses observational data in the light of our simulation results, and makes
predictions of the Galileo mission. However, the final judgement should come from the

visit to Jupiter by Galileo.



The Application of the Rice Convection Model to Jupiter

2.1  The Rice Convection Model (RCM)

The Rice Convection Model (RCM) deals with the slow-flow region of the Earth's in-
ner and middle magnetosphere, specifically, the region of closed magnetic field lines
(Figure 2.1) on which the plasma flow speed is much smaller than the fast mode speed
[Wolf, 1983]. The model was originally based on the logical scheme proposed by
Vasyliunas (1970), and it has been developed since then. Over the course of two decades,
the RCM has become a mature and successful model. From its basic assumptions, the
RCM reduces the three-dimensional magnetosphere-ionosphere system to a pair of coupled
two-dimensional computations, one in the magnetosphere and one in the ionosphere.
Based on a set of initial and boundary conditions, the RCM computes the coupled iono-
spheric and magnetospheric electric-field and current patterns; the RCM also calculates the
distribution and motion of magnetospheric plasmas.

The basic assumptions used in the RCM are:

(1) The magnetospheric flow velocity is small compared to the fast mode speed and the
inertial currents are negligible compared to the gradient/curvature-drift currents.

(2) The divergence of the gradient/curvature-drift current in the magnetosphere is bal-
anced by the divergence of the horizontal conduction current in the ionosphere through
Birkeland currents flowing between the two regions.

(3) The magnetospheric magnetic field is taken from an input model, and is not deter-
mined self-consistently from currents computed with the convection model.

(4) Each magnetic field line is an equipotential. On the magnetic field line, no electric
potential drop occurs between ionosphere and magnetosphere.

(5) The plasma pressure is isotropic.
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Figure 2.1 The Earth’s magnetosphere in the noon-midnight meridian plane. Hollow ar-
rows represent plasma flows. Solid curves with arrows are magnetic field lines. The
dashed curves just inside the closed magnetic field lines indicate qualitatively the boundary
of the region to which the RCM can be applied, the slow-flow region. Reprinted from

Wolf [1983].
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Figure 2.2 shows the logic diagram of the Rice Convection Model, which is a modern
implementation of the scheme proposed by Vasylinuas [1970]. The comprehensive de-
scription of basic equations of the RCM is given by Wolf [1983]. Here I will give a brief
description of the RCM equations based on papers by Wolf [1983], Jaggi and Wolf
[1973], and Harel et al. [1981].

First we derive the formula for gradient/curvature drift of particles with isotropic-pitch-
angles.

For particles that are ExB and gradient/curvature drifting, we will show that drift ac-

cording to a law of the form

_ E.xB. + V.YxB.
B2 BZ (2.1)

Ve
conserves 1 (the number of particles per unit magnetic flux). Subscript “e” in (2.1) stands
for in the equatorial plane and V, represents two-dimensional gradient operator in the
equatorial plane. To demonstrate that the drift given by (2.1) conserves 1M, we map the

particle conservation law to the equatorial plane:

d(nBe) , _
ot + Ve(NBeve) =0 2.2)

where NBe is the number of particles per unit area mapped to the equatorial plane.

Substituting (2.1) into (2.2), we get

Be<-§; + Ve Vo +1 aan + Ve{(Ee + VeY)X2]} = 0

(2.3)

where % is the unit vector along the magnetic field line. Using vector identities and

Faraday’s law (VXE = — 9B /ot), we obtain from (2.3)
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(% + ve-Ve}n =0 2.4)

which shows that the convective derivative of 1 equals zero. Therefore, N is conserved
along the drift path of a particle.

In the Earth’s plasma sheet, it is usually assumed that the pitch angles of the particles
are scattered on time scales much shorter than the drift time scale [Vasyliunas, 1968;
Kennel, 1969]. This assumption guarantees that the particle distribution is isotropic, which
is usually a good approximation for particle distributions observed in the Earth’s plasma
sheet (Stiles et al, 1978). Making this assumption and neglecting the loss of heat or parti-
cles from the flux tube, we find that the particles behave like a monatomic, isotropic, ideal
gas (adiabatic exponent y = 5/3) confined by a magnetic field. The kinetic energy per par-

ticle is given by
E(re, ) = A[E(ro] 2.5)

where A is called energy invariant, constant along a drift path; Z(r.) represents an effective
volume occupied by the particles.
From equation (2.4), we know that if a set of particles initially occupied one unit of

magnetic flux, they will forever occupy one unit of flux. The volume corresponding to one

unit of magnetic flux is f ds/B, where the integral limits are assumed to be in the northern

and southern ionosphere, and this is the effective volume in equation (2.5). Therefore, we
have
]-2/3

E(re, A) = K[ f ds/B (2.6)
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which is the relationship between the kinetic energy E of an individual particle and the en-
ergy invariant A.
If the particles are ExB and gradient/curvature drifting in a static electric field and time-

independent magnetic field, then because of the conservation of energy, we have
(VEBe +VGee) Ve qV(re) + Elre, A)) = 0 @.7)

where

VEBe = lz' (_Vev)XBe
Bz (2.8)

is the ExB drift in the equatorial plane, and V is the electrostatic potential. Because 2.7

must be valid for any V and vgce cannot depend on V, it must be true that

VGCe=— 12 VeE(re’ }\')XBe
qB: 2.9)

Substituting (2.6) into (2.9), we obtain

ool [ 4]

VGCe= q Bdr) 2.10)

which is the formula for the average gradient/curvature drift of a flux-tube full of particles

with isotropic pitch angles.
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In the magnetosphere, a plasma distribution is represented by a plasma ns value (Wb-1)
at different positions for different species “s”, characterized by the energy invariant A;. By
giving a magnetic field model (as an input model), the RCM then computes the magneto-
spheric gradient/curvature drift current per unit length by using the formula:

Jace(re) = ; Be(re) Ms(re) ds VGce(re) (2.11)

where the gradient/curvature drift velocity is given by (2.10), and qs is the charge for the

species “s”.

Conservation of current in the magnetosphere gives

e ol

(2.12)

where je is the Birkeland current per unit area away from the equatorial plane. The factor
1/2 accounts for the fact that the Birkeland current generated in the magnetosphere is di-
vided between the northern and southern hemisphere. The RCM ignores the magnetization
current because it has no divergence. We can see from (2.12) that Birkeland current (field-
aligned current) is generated by the non-uniformity of the plasma invariant density at inner
edge of the plasma sheet.

The Birkeland current density ke can be mapped down along field lines to the iono-
sphere, giving

. Bit|} .

(2.13)
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where By is the radial component of the magnetic field at the ionosphere and jy; is the cur-
rent density vertically into the northern (or southern) hemisphere.

From the current density given by equation (2.13), the RCM computes the ionospheric
potential, given the ionospheric conductance model% and boundary conditions on the po-

tential at the poleward and equatorward boundaries:

\2% [3": (- th)] =Jii (2.14)

where Vy, is a horizontal gradient operator in the ionosphere. Once the ionospheric elec-
trostatic potential, and subsequently the electric field, are computed, we can get the magne-
tospheric potential patterns and electric fields through field line mapping, because of the as-
sumption that there is no potential drop along a magnetic field line. The RCM further com-
putes the total drift velocity of particles, which includes the ExB drift and gradi-

ent/curvature drift. This total drift of the equatorial crossing point of a particle of species

~-2/3
As2xV ( I %&)
Vs = VEBe+ VGCe= —-l—Z-EXBe +

B2 qs Be{re) (2.15)

“s” is given by

If the magnetic field is not changing in time, then the above total drift velocity can be

expressed in a convenient form:

- Z X VeVest
: B, (2.16)

where
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- 2/3
Veit=V + Veor + {%)U %&) 2.17)

where V. is the Earth’s corotation potential.

The RCM uses the computed drift velocity to advance the plasma distribution in time.
Particles at r, now moves to re+Ar, experiencing adiabatic compression. The RCM can
take into account of particles undergoing precipitation, charge exchange, etc. This is taken

care of by the loss equation

_a& +vS.VnS = _ni

ot Ts (2.18)
where T; is the loss lifetime for species “s”.

The RCM computes one cycle through equations (2.12) to (2.15), and one trip around
Figure 2.2, each time step. The calculation goes on and on through many loops (time
steps). The RCM monitors the magnetospheric plasma distributions and computes the
coupled ionospheric and magnetospheric electric field and current patterns.

Recently, the RCM has been extended into the high-latitude and modified to compute
precipitation and electric-field patterns for the Earth’s entire ionosphere [Wolf, 1990].

In this thesis, the RCM will be applied for the first rime to the study of Jovian magne-
tospheric plasma transport. The application of the RCM to Jupiter (RCM-J) should im-
prove our knowledge of the Jovian magnetosphere. In 1996, the Galileo spacecraft will
begin an extensive in situ observation of the Jovian magnetosphere. The RCM-J will be

able to provide theoretical guidance for interpretation of data.
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22  The modification of the RCM for Jupiter — the RCM-J

In the Earth’s magnetosphere, the solar wind is the major energy source that drives
most magnetospheric phenomena through magnetospheric convection. However, in the
Jupiter’s magnetosphere, because of the fast spin of the planet, the solar wind plays a much
less important role in magnetospheric processes, although some radio phenomena such as
non-Io-related decametric emission are modulated to some extent by the solar wind
[Nishida and Maezawa, 1986]. Jovian magnetospheric convection is driven by Jovian ro-
tation [Hill and Dessler, 1991]. Thus, the first and major maodification we must consider is
the inclusion of the centrifugal-force drift current caused by the Jupiter’s spin. For cold
plasma, the gradient/curvature drift velocity is neglected compared to the centrifugal drift.
When hot KeV and MeV particles are treated, gradient/curvature drift is considered in the
current calculation. However, in calculating particle transport, we use an ideal-MHD
treatment, in which hot and cold particles are considered to ExB drift together.
Additionally, we make assumptions about the Jovian magnetic field model, ionospheric
conductance, and boundary conditions. All of the above assumptions and modifications

are discussed below.

2.2.1  Thecentrifugal current
The charged particle’s drift velocity in the Jovian magnetosphere caused by the cen-
trifugal force is

~1LMQ?
V= Fentrifugal X B _ B x V( 2 MQr2)

qB2 qB? (2.19)
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where Q is the Jovian spin velocity, r is the distance to the Jovian center (radial coordinate
in a spherical coordinate system), M is the particle’s mass, q is the charge, and B is the
Jovian magnetic field strength.

Mapping the drift velocity in (2.19) to the equatorial plane, we get the electric current
(Amp/m) caused by this drift motion

= s = b —1- § ?
Jealre)= 3 Bl s (r) a v = X Ve MQTD

where b = B, / B, and T, is the crossing distance of the magnetic field line from the Jovian
center in the equatorial plane. The divergence of this current is the Birkeland current den-
sity (Amp/m?) flowing along the field line from the equatorial plane into the northem (or
southern) hemisphere

jl o= _%, V.Jcen = —% ; (VeT]sXVere) ° B (Msgzre) (2.21)

If the gradients are expressed in km1, 1)y and Q2 are in Weber! and sec-2 respectively,
M; in kg, and re in km, then the current density comes out in Amp/m2, If we express the
current in Amp/km? instead of Amp/m?, then there is a factor of 106 in (2.21).

So the Birkeland current driven by centrifugal drift (2.21) must be added to the j driven
by gradient/curvature drift in the RCM-J. However, for the cold torus plasma, the energy
invariant A is set equal to zero, so that those particles generate no gradient/curvature cur-

rent.

2.2.2  Ideal-MHD simulation
When energetic KeV and MeV particles are taken into consideration, we use the ideal-

MHD approximation. Specifically, in computing particle transport, we do not consider the
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differential drift of the hot and cold particles. The hot and cold particles are considered to
ExB drift together. The gradient/curvature drift is not included in the drift velocity v that
is used in (2.15), but it is embedded together with the centrifugal drift in the calculation of
the electric current j, and consequently in the electric potential. Therefore, to do this modi-
fication, we simply take away the gradient/curvature term (second term) of equation (2.15)

in the RCM code.

2.23 m ic field model
In our simulation, the Jovian magnetic field is taken to be a dipole aligned with the spin

axis:

_Mg-37(Mp -
3 (2.22)

B=

where Mg = By R = 4.2 Gauss R}3 is the magnetic moment of Jupiter, By = 4.2 Gauss =
4.2x10 Tesla is the Jupiter's surface magnetic field in the equatorial plane, and Ry =

71400 km = 7.14x107 m is the Jovian radius.

2.2.4  The ionospheri n 1

No reliable conductance model has been developed yet for the Jovian ionosphere. It is
usually assumed, for simplicity, that the Jovian ionospheric conductance is uniform (see
e.g., Hill et al., 1981; Pontius and Hill, 1989). However, the value of the Pedersen con-
ductance is not well known; plausible estimates vary from 0.1 to 10 mhos (see Hill et al.,
1981).

In the RCM-J, we assume uniform Jovian conductance. We take 1 mho as the

Pedersen conductance. With a two-dimensional Cartesian coordinate set up in such a way
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that x coordinate is southward in the Jovian ionosphere and y is eastward, the two-dimen-

sional conductance tensor ¥ is

= (zxx 'zxy)
3=
Zyx  Zyy (2.23)
where
zxx = zp
sin?Ip
_y XM
Zyx = Zay = sinlp
Zyy=Zp (2.24)

where Ip is the dip angle (see Appendix A), and Z; and Zy are Pedersen and Hall conduc-

tance, respectively. For simplicity, we assume that the dip angle is 90°. Thus, we have

= (Zp -ZH)
Y, =
p, 2y (2.25)

and equation (2.14) becomes
2 .
—Zp ViV =i (2.26)

which is the equation the RCM-J solves to determine the potential V.
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2.2.5 The boundary conditions

In order to meet the assumption that the plasma flow speed is smaller than the fast mode
speed and the magnetic field is that of a dipole, we restrict our simulation region to the in-
ner magnetosphere. We limit our simulation region in the equatorial plane to be 5<Ls
20, where L is the radial distance in units of Jupiter’s radius Ry in the equatorial plane. The
dipole magnetic field line is mapped from the equatorial plane at L to the ionosphere at co-

latitude 6 by

sinZ0 (2.27)

Because we set up our coordinates in the ionosphere (see Appendix A), the equatorial
outer boundary corresponds to a poleward boundary (8p) in the ionosphere and the inner
equatorial boundary to an equatorward boundary () in the ionosphere. No data about the
potential on the poleward boundary is available. For simplicity, we assume that the pole-
ward potential is zero (Vp = 0). This assumption is reasonable because the outer equatorial
boundary is far enough from the Io torus that it ought to have litte effect on the dynamics
of the Io torus. Because plasma is transported away from Jupiter by centrifugal force, the
inner equatorial boundary should have little effect on the dynamical behavior of the torus.
For the sake of numerical convergence, at the equatorward boundary, we assume that no
electric current crosses the boundary. Analytical results [see equation (2.47), in Section
2.3; and equation (B23), in Appendix B] show that the equatorial boundary has little effect

on the linear growth rate of the interchange instability of the Io torus.
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After making Jupiter-specific adaptations to the RCM, we carried out a test run. In this
run, we assumed that the plasma was cold, so there was no gradient-curvature drift. The

numerical test run and its analytical check are discussed in the next section.

2.3  Analytical check of the RCM-J
2.3.1  Physical problem considered and test run setup

Consider the ionosphere-magnetosphere coupling problem as shown in Figure 2.3.
The region we consider is a 45° longitudinal sector with L =5 to 9 in the equatorial plane,
which can be mapped into the ionosphere along magnetic field lines. We use our 51x51
(BIxBYJ) ionospheric coordinates (see Appendix A). The cold-plasma initially has an outer
boundary at L = 6.5. Average mass per charge of the plasma jons is 21 amu (see Siscoe et
al., 1981). The number of particles per Weber of magnetic flux is taken to be 9x1022
Weber-! inside the outer edge (L < 6.5 ) [Bagenal et al., 1986; Pontius and Hill, 1989].
The initial particle perturbation at L = 6.5 is taken to be a sine-wave ripple (wave number m
= 8) in the outer boundary of cold particles. The amplitude of the ripple is 1 grid spacing.
We are looking for solutions to Birkeland current and potential patterns given by equation
(2.26) in the-ionosphere. The basic assumptions we use are:

(1) The Jovian magnetic field is a dipole with the spin axis aligned with the dipole
moment.

(2) The Jovian magnetosphere corotates rigidly with Jupiter with the System III period
(T = 9.925 hrs).

(3) The modeling region in the ionosphere is treated in terms of spherical coordinates.
Thus, from assumption (1), the high-latitude boundary is at 6 =0, = sin"1(1/9)1/2 =
19.47°, and the low-latitude boundary is at 8 = 8, = sin"1(1/5)!1/2 = 26.57°.

(4) The plasma consists of one species (ions) with a constant density invariant N, ¢,

t). The density invariant has a jump at the inner edge 8 = 6, + 36(9, t):
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Equatorial plane
Outer edge of the torus

Inner boundary == Outer boundary
of modeling region //()f modeling region

Modeling region

Figure 2.3 The top cartoon shows modeling the region in a meridian plane. The modeling
region in the ionosphere and the equatorial plane are connected by magnetic field lines. The

bottom cartoon shows the modeling region in the equatorial plane.
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0 Op <0< 0p+00
A 30 +0,<0<0e

n={
(5) Assume 80(d, t) = AO(t) exp(i m 9).
(6) Gradient/curvature drift is negligible because the particles are cold. Centrifugal
drift current and ExB drift are considered.
(7) The dip angle Ip is 90°. The ionosphere has spatially uniform conductivity.
(8) All magnetospheric particles are in the equatorial plane, a reasonable assumption
because nearly all cold torus particles mirror near the equatorial plane.

The analytical solutions to the above boundary problem are discussed next.

2.3.2  Analytical treatment
(1) Electric potential

For clarity, we separate the electric potential V into two regions:

Vi 0p<0<0B,+030,n=0

V=
{ Vo 80+60p,<0<0e,n=AnN (2.28)

For 6,<0 < 0,+80, and also for 8,+30 < 0 < O, there is no field-aligned current,

and (2.26) becomes simply

Viv=0 (2.29)

which has the following general solution in spherical coordinates:

V =[C (cscB + cot®)™ + D (csch + cotd)™] eimd (2.30)
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Because the potential V is required to be 0 at 8p, the potential for 8, <0 < 0,+060 can be

written

(csc Op + cot Bp)m  (csc O + cot )m oimd

Vi=C
! L (csc @ +cot@)m  (csc O + cot Bp)m

Applying the condition that no current crosses the equatorward boundary

aV2| __1 A2}
00 |9e sin ® 9 Oe

yields the following expression for the potential for 0,100 < 6 < O,

csc e + cot B)m  (esc 0+cotO)m . imp

 (
V=D
2 L1 (csc @ +cot ©)m  (csc O, + cot 6)m

The potential must be continuous across the sharp inner edge at 8 = 0y, + 66:

V] l°b+86b = V2 |9b+89b

which implies that

where

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)



Oy + cot Op ™
X = (€Y% b
(‘::sc0e+cot(-)e)

y=& 0p +cot 0, ™
csc O + cot Bp

The jump in the normal derivative can be derived from (2.21) and (2.26):

aVa _ oVi

__MQ*AnR} cos6y, 986

_ﬁ—e}#aeb _5(9—%+59b_ Z, sin 60y, d

Substituting (2.31), (2.33), and (2.35) in (2.38) gives

_iX+ixh M Q% An R? cos6, ABCO)
Xy +ixyy] 2%  sind0,

__i(¥+iYh MO?ANRE cosby A
XY +ixyyy] 2%  sin%6
The ExB drift velocity of a boundary particle is given by

_IExBy__ 11 9V
B? B; R;sin 6 9¢

9 = 0b+59b

so that

o . . a) i oV
—+¢ —| 80 =- —
(at ¢3¢ R? B; sin 6y, 99

0= 9b+86b
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(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)



26

where ¢ is the azimuthal drift velocity of the boundary particle, which is caused by the cen-

trifugal force and can be easily obtained from (2.19):

p=—>1 L M@2DbxVir-¢
Ry sin 0, q B;

andr =LR;=R; /sin2 0,
Vir = Vi(L Ry) =R; Vi( —_—12—) =2¢0s89

sin“0 sin30

Therefore,

q-,=2M92cos0b___ M Q2
qB; sin60, qBj sin 0,

Substituting (2.33) into (2.42), we solve for AB(t)

AB(t) = AB(0) exp(y t) expli m (A — )]

where the growth rate yis

m MAn Q% (XY +(X¥)2- X%+ X2

"4 %, By sin %0y, (XY + (XY)?

and

__Mang@? (Y-y1p
4 Z, By sin %0y, (XY + (XY)?

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)
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Therefore, equations (2.36) — (2.37), (2.39) - (2.40), and (2.45) — (2.48) completely
determine C and D, which in turn determine the potential through equations (2.31) and
(2.33).

(2) Birkeland Current

Because the magnetospheric particles are all pictured as confined to the equatorial plane,
the drift current flows in that plane. The electric current (Amp/m) caused by the centrifugal
drift motion is

= = b —'1' S 22
Jcen ; anqv ; T\szV( 2 M:Q'r ) (2.49)

where b=B/B. The divergence of this current is the Birkeland current density (Amp/m?)
flowing out of the equatorial plane into both northern and southern hemisphere along the
field line

= VeJeen=— 3 (VNsXVD) - b (MQr
b J ;( NsxVr) « b MQ%) 2.50)

We express equation (2.50) in the ionosphere

Ji=—Vedeen=— 3, (VsxVr) » b (MQ?
I cen ;( MNs ) (M:Q%1) @.51)

where now the gradients are taken with respect to ionospheric coordinates but r is the
equatorial crossing distance, and Jy; is the total current density goes into both northern and
southern ionospheres.

We have
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Vin = An 8(0 — 0, — 30(, t -e—A 1 986 &

n = An o( b (9, v) (R ) -—9) 2.52)
.. _ncOS0 P
bxV; n39¢

so that

Vm-ngir=2 -°95—9-8(9 Op — 89)@
Ry sin4 © 1)

Therefore, the Birkeland current density in the ionosphere is

30
00 (2.53)

Jyi=2 MAn QZ—C—QS—Q-S(G B — ae)a
Integrating equation (2.53) over latitude across the inner edge, we get the Birkeland current
per unit longitudinal length
T =im2MAn Q? Ry €958 Ag(p) eim¢
Li=im2MAN TRy G o A0 € (2.54)
(3) Analytical results
We assume that the initial sine-wave ripple at the inner edge has an amplitude of one

grid spacing, i.e., the amplitude
AB(0) = (6. - 6,)/50

'i‘hen, we take the imaginary parts of equations (2.31), (2.33), and (2.54) to be physical
potentials and Birkeland currents. Substituting wave number m = 8, particle mass M =
21myp, mp = 1.67x10-27 kg, An = 9x1022 Wb-1, Q = 1.76x10~4 /sec, Ry = 7.14x107 m,
Ly = 6.5, Zp = 1 mho, and AB(0) = 2.476x10-3 into equation (2.54), we obtain the
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Table 2.1 Birkeland Current from Analytic and Numeric Calculations

Longitude Analytic Numeric Longitude Analytic Numeric
(degrecs) (ampere/km)  (ampere/km) (degrees) (ampere/km)  (ampere/km)

0.000 74.480 74.419 23.438 -75.586 —74.957
0.938 73.512 73.235 24.375 -73.956 -72.528
1.875 71.315 70.544 25.313 -71.018 -70.049
2.813 67.942 67.830 26.250 —66.810 ~65.252
3.750 63.461 62.956 27.188 -61.397 —60.408
4.688 57.955 58.041 28.125 —54.868 —-53.536
5.625 51.519 51.293 29.063 —47.337 —46.530
6.563 44.261 44.425 30.000 —38.939 —-38.008
7.500 36.298 36.216 30.938 -29.831 -29.336
8.438 27.755 27.879 31.875 -20.182 -19.713
9.375 18.766 18.716 32.813 -10.174 -10.024
10.313 9.466 9.499 33.750 5.2x10-4 1.6x10-3
11.250 —6.7x104 5.6x104 34.688 10.150 10.023
12.188 -9.491 -9.500 35.625 20.084 19.713
13.135 -18.858 -18.715 36.563 29.616 29.335
14.063 -27.956 —-27.881 37.500 38.574 38.006
15.000 -36.640 -36.213 38.438 46.796 46.526
15.938 —44.769 -44.422 39.375 54.140 53.535
16.875 -52.207 -51.294 40.313, 60.484 60.406
17.813 -58.824 -58.043 41.250 65.727 65.253
18.750 —64.502 -62.952 42.188 69.791 70.046
19.688 -69.132 -67.829 43.125 72.622 72.521
20.625 -72.622 -70.542 44.063 74.188 74.936
21.562 -74.895 -73.240 45.000 74.480 74.419

22.500 -75.895 -74.410







