Selection of Illustrations

From

LIST OF ILLUSTRATIONS

Figures

2. Colour satellite mosaic of Melville Island ... 4

3. Map of reflection seismic profiles, wells and structural cross-sections,
 Melville Island ... 12

7. Correlation of sonic, density, lithology and various synthetic logs of the logs
 of the Panarctic et al. Sabine Bay A-07 well with a nearby portion of reflection
 seismic line P1192 ... 29,30

10. Topography and bathymetry of Melville Island-area 44

11. Bouguer gravity anomaly map of the western Arctic Islands-area 48

12. Magnetic anomaly map of the western Arctic Islands-area 50

21. Isopach map of the upper unreflective succession (sP3, sPC) 70

22. Suggested correlation of Precambrian units 75

25. Generalized stratigraphic cross-section of the Franklinian Succession,
 northern Victoria Island to northwestern Melville Island 81,82

28. Representative stratigraphy: ?Precambrian to Devonian shelf rim
 stratigraphy and cover, west central Melville Island 89

29. Representative lithostratigraphy: ?Precambrian to Devonian intra
 -shelf basin, embayment and cover, central Melville Island 91

30. Representative lithostratigraphy: ?Precambrian to Devonian of the
 Towson Point Carbonate Build-up and cover, northeastern Melville Island . . . 93

33. Suggested correlation of ?Cambrian and Lower Ordovician seismic units . 107

34. Correlation chart, Lower Ordovician through Upper Silurian strata 113

41. Correlation chart, Devonian strata of Melville Island 132

59. Bar graphs of sedimentation rate plotted against time (540-355 Ma) 188

60. Isopach map of ?Lower Cambrian and ?Middle Cambrian units 190

64. Isopach map of ?Middle and ?Upper Cambrian, and ?Lower Ordovician units 197

67. Paleogeography of late Arenig-early Llanvirn; isopachs of the halite facies .. 203

68. Isopach map of the Cornwallis Group and age equivalent strata 205

69. Isopach map of the Cape Phillips Formation and age equivalent strata 207
77. Deltaic lobes of the Hecla Bay Sequence, and of the shelf-slope break above the Cape De Bray Formation 225
79. Isopach map of the Hecla Bay Sequence 229
80. Palinspastic cross-sections of the Hecla Bay Sequence 230
81. Devonian paleogeographic maps and schematic cross-sections, Arctic Islands 233
82. Isopach map of the Beverley Inlet Sequence 235
84. Isopach map of the lower Parry Islands Sequence 238
88. Correlation chart, Carboniferous through Holocene strata 250
99. Bar graphs of sedimentation rate plotted against time (322-57 Ma) 286
100. Fold trends of the Franklinian Mobile Belt, western Arctic Islands 293
134. Subsurface tectonic elements on the Thumb Mountain Formation 393
142. Beverley Inlet Anticline, on a portion of seismic profile P1660 407
168. Structure contour map on the Eleanor River Formation 467
169. Sub-Carboniferous geology of Sabine Peninsula 468
172. Stereonet plots of kinematic indicators collected at numerous sites in the Canrobert Hills .. 475
179. Stereonet plots of kinematic data from Kitson River Inlier 491
182. Weatherall Depression on a portion of seismic profile P1921 500
195. Paleogeographic map of Melville Island area for mid-Permian time 527
200. Map of Mesozoic gabbro dykes, extension faults and related magnetic anomalies ... 553
203. Eurekan fold trends (D8) and recent earthquake epicentres (D9) plotted on the Bouguer anomaly for land areas and on the isostatic anomaly for marine areas 553
208. Kinematic model for the Eurekan Orogen in the Canadian Arctic Islands 566
210. Commodity occurrences map of Melville Island 586
Figure 3.
Figure 7. (continued) Legend to accompany the figure on the previous page. This figure is universally applicable to most other text illustrations.
Figure 11.
Figure 12.
Figure 22. Suggested correlation of Precambrian lithostratigraphic units (Northern Cordillera and Arctic Islands), and *Precambrian seismic stratigraphic units (Melville Island).
Figure 25. Generalized stratigraphic cross-section of the Franklinian Succession (Precambrian - Devonian) from northern Victoria Island to northwestern Melville Island displaying major lithostratigraphic and seismic stratigraphic units, facies transitions, geological provinces and the location of the Melville Island map-area. Note the distribution of these features with respect to the depth to Moho (as shown on the inset map). Location of the line of section is shown on Figure 26.
Figure 28.
Figure 29.
Figure 30.
<table>
<thead>
<tr>
<th>RADIOMETRIC AGE</th>
<th>SYSTEM</th>
<th>SERIES</th>
<th>MELVILLE ISLAND</th>
<th>SUBSURFACE BLUE HILLS SYNCLINE</th>
<th>SUBSURFACE SOUTHEAST</th>
<th>VICTORIA ISLAND</th>
<th>CORNWALLIS ISLAND</th>
<th>SOMERSET BAY</th>
<th>ELLESMORE ISLAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>4707</td>
<td>60s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5107</td>
<td>50s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5237</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5407</td>
<td>50s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 33.
<table>
<thead>
<tr>
<th>SYSTEM/PERIOD</th>
<th>SUBSYSTEM/STAGE</th>
<th>RADIOLOGIC AGE (M.y.)</th>
<th>GRAPTOLOITE ZONES</th>
<th>CONODONT ZONES</th>
<th>KITSUBERI HILLS</th>
<th>MCCORMICK INLET/CENTRAL MELVILLE ISLAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEVONIAN</td>
<td></td>
<td>430 410 405 410</td>
<td></td>
<td></td>
<td></td>
<td>Upper Shaw Hills</td>
</tr>
<tr>
<td></td>
<td></td>
<td>410</td>
<td></td>
<td></td>
<td></td>
<td>BARLOW INLET FM (-unit 7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>410</td>
<td></td>
<td></td>
<td></td>
<td>ELDORADO FM (-unit 5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>410</td>
<td></td>
<td></td>
<td></td>
<td>CAPE PHILLIPS FM (-lower part)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>410</td>
<td></td>
<td></td>
<td></td>
<td>CAPE PHILLIPS FM (-upper part)</td>
</tr>
<tr>
<td>UPPER SILURIAN</td>
<td></td>
<td>420 420 420 420</td>
<td></td>
<td></td>
<td></td>
<td>ALLEN BAY FM (-upper part)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>420 420 420 420</td>
<td></td>
<td></td>
<td></td>
<td>ALLEN BAY FM (-part of unit 4)</td>
</tr>
<tr>
<td>LOWER SILURIAN</td>
<td></td>
<td>430 430 430 430</td>
<td></td>
<td></td>
<td></td>
<td>THUMB MOUNTAIN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>430 430 430 430</td>
<td></td>
<td></td>
<td></td>
<td>BAY FORD FM (-upper part)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>430 430 430 430</td>
<td></td>
<td></td>
<td></td>
<td>ELEANOR</td>
</tr>
<tr>
<td>ORDOVICIAN</td>
<td></td>
<td>440 440 440 440</td>
<td></td>
<td></td>
<td></td>
<td>CANROBERT FM (-upper part)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>440 440 440 440</td>
<td></td>
<td></td>
<td></td>
<td>RIVER</td>
</tr>
<tr>
<td>LOWER ORDOVICAN</td>
<td></td>
<td>450 450 450 450</td>
<td></td>
<td></td>
<td></td>
<td>FM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>450 450 450 450</td>
<td></td>
<td></td>
<td></td>
<td>FM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>450 450 450 450</td>
<td></td>
<td></td>
<td></td>
<td>FM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>450 450 450 450</td>
<td></td>
<td></td>
<td></td>
<td>FM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>450 450 450 450</td>
<td></td>
<td></td>
<td></td>
<td>FM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>450 450 450 450</td>
<td></td>
<td></td>
<td></td>
<td>FM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>450 450 450 450</td>
<td></td>
<td></td>
<td></td>
<td>FM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>450 450 450 450</td>
<td></td>
<td></td>
<td></td>
<td>FM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>450 450 450 450</td>
<td></td>
<td></td>
<td></td>
<td>FM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>450 450 450 450</td>
<td></td>
<td></td>
<td></td>
<td>FM</td>
</tr>
</tbody>
</table>

Figure 34: Correlation chart, Lower Ordovician through Upper Silurian strata of Melville Island. Explanation of symbols: C=conodont collection; G=graptolite collection; M=shelly microfauna. All significant fossil collections are listed in Appendix 4.
Figure 59. Bar graphs of sedimentation rate (logarithmic scale) plotted against time (540-355 Ma).
Attitude (vector and angle) of seismic clinoforms: transport direction determined from intersecting seismic profiles and three point problem solution.

Relative transport direction (from uplap or downlap pattern on a single seismic profile)

Electrographic determination

Figure 77.
Figure 80. Palinspastic cross-sections of the Hecla Bay Sequence: a) Weatherall Bay to western Dundas Peninsula; b) western Dundas Peninsula to Canrobert Hills. Lines of section are located on figures 77 and 79. Vertical exaggeration: X12.5.
Figure 81.
Figure 82.
Figure 88.
Figure 99. Bar graphs of maximum sedimentation rate (logarithmic scale) plotted against time (322-57 Ma) for the Sverdrup Basin. A: Sproule Peninsula; B: central Sabine Peninsula; C: northern Sabine Peninsula.
Figure 100.
Figure 134.

Legend:
- Major contraction fault: defined; approximate
- Minor contraction fault: defined; approximate
- Extension fault: defined
- Anticline: defined; approximate
- Syncline: defined; approximate
- Strike slip fault
- Magnitude of slip (km)

Map showing various geological features including faults and locations such as Hecla and Griper Bay, Sabine Bay, Viscount Melville Sound, and others.
Figure 168.
Figure 169.
Figure 172.
Figure 179.

- Pole to bedding
- Pole to cleavage
- Pole to slickenside/fault plane
- Pole to mineral vein/dyke
- Pole to axial plane of second/third order fold
- Pole to axial plane of higher order fold
- Fold axis
- Slickenside lineation with portion of slip plane

- Slickenside lineation with portion of slip plane: thrust (compressional) sense lineation
- Normal (extensional) sense lineation
- Strike slip sense lineation: sinistral; dextral
- Transpressive sense lineation: sinistral; dextral
- Transcurrent sense lineation: sinistral; dextral

- Principal transport direction
- Secondary transport direction
Figure 195.
Figure 200.

Legend:
- Evaporite diapir
- Normal fault
- Undesigned fault with downthrown side indicated
- Strike slip fault with slip sense
- Linear magnetic anomaly
Figure 208. Kinematic elements of the Eurekan Orogen in the Canadian Arctic Islands. Diagram modified from Okulitch and Trettin (in press) and Trettin (1990)