INFORMATION TO USERS

The most advanced technology has been used to photo-
graph and reproduce this manuscript from the microfilm
master. UMI films the original text directly from the copy
submitted. Thus, some dissertation copies are in typewriter
face, while others may be from a computer printer.

In the unlikely event that the author did not send UMI a
complete manuscript and there are missing pages, these will
be noted. Also, if unauthorized copyrighted material had to
be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are re-
produced by sectioning the original, beginning at the upper
left-hand corner and continuing from left to right in equal
sections with small overlaps. Each oversize page is available
as ene exposure on a standard 35 mm slide or as a 17" x 23"
black and white photographic print for an additional charge.

Photographs included in the original manuscript have been
reproduced xerographically in this copy. 35 mm slides or
6" x 9" black and white photographic prints are available for
any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

i

&

Accessing the World's Information since 1938

300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA

Order Number 8900252

The effects of cache coherence on the performance of parallel
PDE algorithms in multiprocessor systems

Johnson, Sandra Kay, Ph.D.

Rice University, 1988

U-M-1

300 N. Zeeb Rd.
Ann Arbor, MI 48106

PLEASE NOTE:

In ali cases this material has been filmed in the best possible way from the available copy.
Problems encountered with this document have been identified here with a check mark v .

o o0 A O N

10.

11.

12.
13.
14.
15.
16.

Glossy photographs orpages

Colored illustrations, paper orprint

Photographs with dark background _____

llustrations are poorcopy __

Pages with black marks, not original copy _\é

Print shows through as there is text on both sides of page
Indistinct, broken or small print on several pages

Print exceeds margin requirements _______

Tightly bound copy with print lostinspine _____
Computer printout pages with indistinct print

Page(s) lacking when material received, and not available from schoo! or
author.

Page(s) seem to be missing in numbering only as text follows.
Two pages numbered . Text follows.

Curling and wrinkled pages _\L

Dissertation contains pages with print at a slant, filmed as received

Other

UMI

RICE UNIVERSITY

The Effects of Cache Coherence on the Performance
of Parallel PDE Algerithms in Multiprocessor Systems

by

SANDRA KAY JOHNSON

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

DOCTOR OF PHILOSOPHY

APPROVED, THESIS COMMITTEE:

— N ™
Ha- e

Faye’ A. Briggs, Assbckte Professor of

Electrical and Computer Engineering,
Director

/?ac\f%‘

Peter J. VarTnan, Assistant Professor of
Electrical and Computer Engineering

Wy dmes

William W. Symes, Prefessor of
) Mathematical Sciences

Houston, Texas
May, 1988

The Effects of Cache Coherence on the Performance of

Parallel PDE Algorithms in Multiprocessor Systems

by

Sandra Kay Johnson

ABSTRACT

The advent of parallel processing systems has resulted in the potential for
increased performance over traditional uniprocessor systems. However, while there
has been significant advances in developing these systems, designing parallel algo-
rithms to run on them has not kept up with the pace. Although parallel algorithms
have been studied in the literature, very little has been done in studying how various
architectural features effect the performance of these algorithms. This thesis presents
the results of a study conducted to determine how one particular design feature of a
parallel processing architecture, cache coherence maintenance, affects the perfor-

mance of parallel partial differential equations’ (PDE) algorithms.

A high performance shared-memory multiprocessor architecture with private
caches and a single bus or full crossbar interconnection network is assumed. The per-
formance degradation as a result of using a directory based cache coherence protocol
is evaluated on specific implementations of three synchronous parallel PDE algo-
rithms (Jacobi’s algorithm, red-black successive over-relaxation or SOR and the

preconditioned conjugate gradient algorithm or PCG). A trace driven cache simula-

ii

tor determines this degradation. The trace is obtained by symbolically executing the
algorithm on the multiprocessor system. Parameters derived to evaluate the perfor-
mance degradation are used as input into an execution time model used to calculate
the time needed to execute one iteration of each algorithm. This facilitates parallel
algorithm speedup calculations over the sequential algorithm as well as over the

parallel algorithm without cache coherence.

The results show that implementing cache coherence degrades the overall per-
formance of the parallel PDE algorithms considered by 10 to 30 percent. Various
cache design features such as the cache blocksize, the mapping function and the
cache size and the algorithm design feature considered, the PDE grid decomposition
strategy, have no appreciable effects on the algorithm performance degradation. In
fact, the major factors affecting this degradation are the cache miss ratio, the size of
the PDE grid relative to the cache size and the write probability of the parallel algo-
rithm. Finally, for the coherence protocol used in this study, SOR has the best

speedup performance, followed by Jacobi’s algorithm and PCG, respectively.

Acknowledgements

I would like to express my sincere appreciation to my research advisor, Dr.
Faye” A. Briggs. Thank you for your support, encouraging words, and technica™ zoun-
sel. I would also like to thank Dr. William W. Symes for your technical advice on
PDEs and for your membership on my research committee. Furthermore, many
thanks to Dr. Peter J. Varman for your counsel and membership on my research com-
mittee.

Moreover, it is with gratitude that I thank Dr. C. S. Burrus. Your inspiring words
of advice will always be remembered. To Mr. Donald Schroeder, your helpful hints
on troff have not been forgotten. Thank you for taking the time to help.

To my family, especially my beloved mother. Words cannot express my thank-
fulness to you. Your constant advice to study, study, study has truly paid off for me.
Finally, to my dear Alfred, thank you for being there for me through thick and thin.

I’'m looking forward to sharing a life with you.

Table of Contents

CHAPTER 1 INTRODUCTIONcovrrrnrrrernrncnrnnrnnsnsnsesenssssssesssssossossasens

Motivationscccceuenee.

The Illinois Protocol

The Ownership Protocol

Directory Protocols

--

--

--

--

oo

oo

...

..

..

..

Coherence Protoco] SIMUIAEAcooveeeveeeeeeereeeseeeeseeesnessssersssssssssessessssessenes

Execution Time Model! ..

Simulation Methodology

..

and Model ... sesrersasnesenas

CHAPTER 3 JACOBY’S ITERATIVE ALGORITHMon.........

The Classical Algorithm

..

12

14

14

15

16

17

18

18

19

20

28

30

34

38

38

CHAPTER 5 THE PRECONDITIONED CONJUGATE GRADIENT
ALGORITHM ...t se e

Preconditioned CGo.ceevemveemmremernienineeeeeeseeeeosees oo oo

41

42

53

70

89

vi

Simulation RESUILScceveimvieremnnrneniererircnnineeneresssesorsssesssnsesesesssessssssnsses 237
Miss Ratio/Miss Ratio Degradationceceeceerererevereremsesssseessssseessseonsessanns 237
Invalidation RAtOccceiievceerreecemenesesnnsnnnsnssseesesenssssssessssssssssssnecssnssenns 244
PIXICO ettt tebesstsesasessssssssesesssssnsasasassssssssssasens 244
PIXICS ottt sscnsssessesssstassessessestssssessss s sasssssssnasssssssnersneas 250
Prefetching SIategIescocececrmerrneerneerinieresreseressesessssesensessssesssssssssesnses 258
MultiproCESSOT SPEEAUDcovrurrererrerrererreserersssssisessssesessssesssseessssssesssesessenees 274
PCG CONCIISIONScuvurniririiurecncsecrnnissesssnsissesesessesesssssesssssssssecscnsensssssssssen 281
CHAPTER 6 CONCLUSIONoommrrnrerinreccensinsssssessescssensessssssesssssans 287
Algorithm COMPATISONSceerrernerrrrrieerereresresniseseesessssssssssesssssssessssssssessssens 287
Research SUMMATNIEScceveiiiuriereiirireneeece et eecse et snssesess s sssane 291

FULUIE WOTK ..ottt seveessseseseseesesses e sssn s neoneneonesoeemeseemms e e 293

CHAPTER 1

INTRODUCTION

The advent of parallel processing systems has resulted in the potential for
increased performance over traditional uniprocessor systems. While there has been
significant advances in developing these systems, designing parallel algorithms to run
on them has not kept up with the pace. Parallel algorithms present innovative and
efficient means of handling sophisticated problems and allow the user to investigate
larger and/or more complex problems. They offer speedup over their corresponding
sequential algorithms resulting in increased system throughput. This increased per-
formance is exhibited in a wide spectrum of applications. Matrix algorithms, partial
differential equations (PDE) algorithms, and sorting and searching algorithms are a
few examples used in such applications as computational physics, aerodynamics,
image processing and artificial intelligence.

There are various performance metrics that may be used in evaluating the per-
formance of parallel algorithms. Four paradigms beneficial to the development and
performance evaluation of these algorithms are discussed in [1]. The underlying sys-
tem architecture is a major component of algorithm performance and should seriously
be considered when evaluating them. The design space of parallel processors consists
of many features such as general versus special purpose machines, shared memory
versus message passing communication, tens of processors versus hundreds or even

thousands of processors and processor-memory Or Processor-processor

interconnection topology. Therefore paralle] algorithms may be optimized for execu-

tion on a particular class of machine architecture.

1.1. Motivaticns

Although parallel algorithms have been studied in the literature, much less has
been done in studying how various architectural features effect the performance of
these algorithms. This thesis presents the results of a study on how one particular
design feature of a parallel processing architecture, cache coherence maintenance,
affects the performance of parallel PDE algorithms. PDE algorithms were chosen
because they are widely used in scientific and engineering communities and they are

the subject of numerous research papers (see [2] for a comprehensive survey).

The PDE algorithms studied are based on the model problem [3]. A linear sys-
tem of equations are obtained from the solution of two-dimensional, elliptic boundary
value problems. The equations are derived using central differences to replace the
derivatives of LaPlace’s equation describing a rectangular region R. The region is
completely specified at the boundaries. This is known as the Dirichlet problem. A 5-

point discretization of the region is used for all algorithms studied.

The high-performance parallel processing architecture used as a foundation in
this study is a tightly-coupled multiprocessor system as shown in Figure 1.1. Here
we see P processors connected to M memory modules via an interconnection net-
work. There are also N I/O processors or channels to coordinate I/O activities. This
architecture is similar to the Sequent Symmetry series [4] and SPUR [5], both with

bus architectures, and the IBM 3090 Model 400 [6], a full crossbar system. All pro-

OO NEING

Il D1 I2 D2 IP DpP

INTERCONNECTION NETWORK

M1 M2 | ... MM @ @

Figure 1.1. Tightly-Coupled Multiprocessor System.

cessors share the same global memory. Each processor has its own private daia and

instruction caches.

Without the caches, the contention in the interconnection network and memory
modules resulting from the processors’ read and write requests would prohibitively
degrade system performance by exhibiting unacceptable memory access times. The
caches are introduced here for the same reasons they were introduced in uniprocessor

systems; as high-speed buffers operating on the principle of locality effectively

4

reducing the number of requests to main memory. While the inclusion of caches in
uniprocessor systems significantly reduces the effective memory access time, result-
ing in significant performance improvements [7], the introduction of multiple caches

with possible multiple copies of memory blocks may result in data inconsistencies.

There are three factors that contribute to the inconsistent data problem: (1)
allowing shared modifiable data to be cached, (2) allowing processes to migrate to
different processors and (3) /O activity [8]. If shared modifiable data is allowed to
be cached, consider the scenario illustrated in Figure 1.2. If two processes, A and B,
running on separate processors (P1 and P2, respectively) both perform a read access
to the same memory block, this block will be placed in the data cache of both proces-
sors. Process A modifies the block resulting in inconsistent data between the caches
(i.e., if process B accesses this block, it will obtain stale data unless C2 is notified of

the block modification by process A).

A similar situation occurs when a process is allowed to migrate as shown in Fig-
ure 1.3a. Here process A modifies a memory block while executing on P1. If the pro-
cess migrates to P2 and reads this block it will obtain stale data. Figure 1.3b illus-
trates the inconsistencies that may occur as a result of O activity. Process A
modifies a memory block while executing on P1 as shown in part a of this figure. If
an /O processor subsequently accesses this block it will obtain old data. If a mul-
tiprocessor system is to perform correctly, the possibility of having several different

copies of the same data must be avoided.

x | C1 x] C2

Shared
Memory

a. processes A and B read data x on P1 and P2 (respectively).

= ci] 2

Shared
Memory

b. process A modifies data x resulting in inconsistent data bztween C1 and C2.

Figure 1.2. Data Inconsistencies when Caching Shared Modifiable Data.

Esafe c2

Shared
Memory

a. process A modifies data x while running on P1.

x¥ 1 C1 x]C2

Shared
Memory

b. process A migrates to P2 and then references an old value of x.

Figure 1.3a. Data Inconsistencies when Processes Migrate.

xf]Cl

C2

Shared
Memory

a. process A modifies data x while executing on P1

C2

Shared

Memory |

read x IOP

b. the IOP references an old value of x

Figure 1.3b. Data Inconsistencies as a Result of /O Activity

There are various methods presently available for solving this inconsistent data
problem. All methods require overhead that results in some type of performance
penalty. Although there has been some work done on evaluating the effects of system
architecture on parallel PDE algorithm performance, there has been no previous work
done on evaluating how maintaining cache coherence affects the performance of
these algorithms. Since implementing a coherence protocol in multiprocessor systems
may result in prohibitive performance degradation, an in-depth study is needed to dis-
cover how this architectural design feature effects algorithm performance. In this
study, several parameters are defined to evaluate the particular coherence protocol
used (discussed in Chapter 2). These parameters are then used in evaluating the per-
formance of three popular synchronous iterative parallel PDE algorithms, the point
Jacobi algorithm, red-black successive over-relaxation (SOR) and the preconditioned

conjugate gradient algorithm (PCG).

The study was conducted to determine the extent to which implementing cache
coherence degrades algorithm performance. Various cache design and other architec-
tural features are examined by varying cache blocksize, cache size, the address map-
ping function, prefetching stategies and the total number of processors in the system.
Two interconnection networks are also studied; single bus systems and the full
crossbar network. The study was also administered to determine how PDE grid
decomposition strategies affected algorithm performance while maintaining multi-
cache coherence. Detailed presentations of the effective memory access times for the
shared memory system and the algorithm execution time model is included to provide

the performance metrics needed in evaluating system performance.

1.2. Related Work

Dubois and Briggs [9] evaluated the performance of a specific coherence proto-
col on a general workload model. Archibald and Baer [10] evaluated the effects of
six coherence protocols, all based on bus architectures, using synthetic trace driven
simulations of general workloads. Lee, ez. al. [11] evaluated the effects of a software
coherence algorithm on a high performance system with a pipelined multi-stage inter-
connection network. A general set of numerical subroutines spanning a wide range of
scientific applications was used to model the workload. All of this work has evaluated

the performance of coherence protocols on a general workload.

Fox and Otto [12] emphasized the importance of the computation to communi-
cation ratio and load balancing the execution of parallel algorithms. These two fac-
tors are the major causes of system performance degradation. Performance metrics
used in this study were speedup and processor efficiency (speedup per node). They
studied the solution to LaPlace’s equation running on the hypercube system. The rec-
tangular region was decomposed into square subregions with each subregion assigned
to a hypercube node. One of the major differences between the hypercube and the tar-
geted system of this study is the method of communication between processes. In the
hypercube architecture, all processors have their own local memories. Processes run-
ning on processors (nodes) communicate via passing messages (either directly or
indirectly). In the shared memory system used in this study, processes communicate
by simply accessing the same memory block. It is the overhead incurred by imple-
menting this communication while maintaining multi-cache coherence that is subject

of this thesis.

10

Vrsalovic, et. al. [13] presented a analytic model for predicting multiprocessor
performance. An iterative solution to Poisson’s equation using a 5-point discretiza-
tion of a square grid was used. The work concentrated on defining how the various
PDE grid decomposition strategies affected the multiprocessor system speedup.
Square, triangular and hexagonal grid partitionings were used and the hexagonal

decomposition strategy had the best performance.

The generalized multiprocessor system used in the study consisted on N proces-
sors with associated local memory, global memory and an interconnection network
for communication between the processors and global memory. All private data was
placed in the local memories. Two approaches to the problem were used depending
on whether or not multiple accesses to shared data by a process required maintaining
local copies of it. Although not specifically stated in the paper, supporting local
copies of shared data requires that they be read-only (see Figure 1.2) or modifiable
when using a coherence protocol. In either case the overhead incurred may be
represented by the parameters T, (global access time) and T (processing time for
copvying a global data element) used in the execution time model. Their paper
evaluated the performance degradation by presenting the memory access time only as
a function of T and T7. This thesis presents a more detailed performance evaluation
by incorporating the effects of cache coherence into the effective memory access
time.

Saltz, er. al. [14] presented the empirical results of a study on the solution of the
heat equation by red-black SOR on the Intel iPSC Hypercube [15]. Since the com-

munication overhead was substantially large for this system, the work concentrated

11

on reducing the amount of communication needed between nodes. Both rectangular
and strip decomposition strategies were used and the PDE grid-size range was from
64x64 to 512x512 points. The performance metric used in this study was the com-
munication cost per iteration. It was observed that for grid-sizes of 256x256 and
smaller, rectangular decomposition provided the best performance whereas the strip

decomposition performed better for the 512x512 grid-size.

Reed, er. al. [16] presented the analytic models to study the effects of
stencil/partition/architecture trios on the performance of the solution to LaPlace’s
equation on a rectangular grid. Five different stencils were used (including the 5-
point) with rectangular, square, triangular and hexagonal decomposition strategies
and message passing and shared memory architectures. They discovered that the
trios must be considered when evaluating multiprocessor performance. Observing
only one or two components may result in suboptimal performance prediction. The
shared memory architecture and execution time models presented were simiiar to the

ones discussed by Vrsalovic, er. al.

Dubois {17] presented an analytic model of cache-based multiprocessors. His
work included evaluating how cache coherence affected the performance of a parallel
red-black SOR algorithm. However, only the fully-associative mapping strategy, one
decomposition strategy and only a one-grid-element cache blocksize was considered.
The work presented in this thesis varied the cache blocksize and used both the direct
and 2-way set-associative mapping strategies. Furthermore, the results are based on

simulations of the algorithm executions.

12

In [18], Dubois used an analytic model to measure the performance degradation
manifested by cache coherence. In particular, an upper bound on the hit (miss) ratio
degradation resulting from cache invalidations was evaluated. An infinite cache was
assumed for steady state task executions. The model assumed there is no correlation
between the reference streams of the processors. This is an unacceptable assumption
for the synchronous algorithms considered in this study. Furthermore, realistic finite
cache systems were not considered; however, it was noted that modeling such sys-

tems are very complex.

All of this previous work has concentrated on multiprocessor performance pred-
iction when executing an iterative solution to LaPlace’s or Poisson’s equation;
emphasizing the effects of the computation to communication ratio and the decompo-
sition strategies on performance. The execution time models presented included a
general representation for memory access times. This thesis presents a detailed
presentation of the effective memory access times in shared memory systems and
considers the effects of two PDE grid decomposition strategies (rectangular and

square) on system performance.

1.3. Thesis Overview

Chapter 2 provides extensive background material on the cache coherence pro-
tocol used when simulating the execution of the algorithms. It also discusses the trace
driven simulation philosophy used and presents a detailed explanation of the perfor-
mance parameters obtained from the simulations, the penalties incurred by these

parameters and the execution time model to be used in evaluating system perfor-

13

mance. Chapter 3 begins with a description of the parallel implementation of Jacobi’s
algorithm used and its simulation. The remainder of the chapter presents the perfor-
mance results of the simulation and the execution time model. The same format is
used in Chapters 4 and 5 for parallel implementations of red-black SOR and the PCG
algorithm, respectively. Finally, the Conclusion (Chapter 6) summarizes the work

presented and suggests directions for future research in this area.

14

CHAPTER 2

BACKGROUND

Several protocols for cache coherency have been discussed in the literature.
This chapter commences with brief descriptions of these protocols. Then the perfor-
mance parameters used in predicting system performance as a result of maintaining
coherence are formulated. The penalties incurred for each parameter are discussed
and a execution time model is derived incorporating these penalties. From this model,
the algorithm speedup and the iteration time degradation are obtained. Finally, a dis-

cussion of the simulation philosophy used and the features simulated is included.

2.1. Cache Coherence

There are basically two types of cache coherence implementations; static and
dymamic. The static protocol is a software controlled solution. Certain memory
blocks are tagged as non-cacheable by the compiler or the user. These blocks contain
shared, modifyable data such as semaphores, locks, barriers and other synchroniza-
tion primitives as well as certain data structures such as job queues. Non-cacheable
blocks are accessed directly from memory. Some shared blocks my be cacheable but
only through critical sections, accessed (and protected) by locks. In this case, the pro-
cessors are responsible for updating main memory before releasing the lock. Software
protocols are usually used in systems with multi-siage interconnection networks.

These systems are usually composed of hundreds or thousands of processors resulting

15

in prohibitive hardware complexity and memory access times for dynamic coherence
solutions. The Honeywell Series 66, the Elxsi 6400 systems, the IBM RP3 [19], and
the experimental VMP multiprocessor [20,21] use this solution to multi-cache incon-

sistencies.

The dynamic protocol may be sub-divided into four types: (1) the shared cache
solution, (2) the classical solution, (3) broadcast protocols and (4) directory proiocols.
In the shared cache solution, all processors share a single cache. This cache is either
adjacent to the processsors or to primary memory. Utilizing a shared cache eliminates
the coherence problem since only one cache is present in the system. ‘This solution is
generally infeasible because the bandwidth of the cache is insufficient to support the
processing demands of the processors. Also, additional access delays may occur
because the cache is usually physically distant from the processors. In general, all of
the problems that orginally led to the design of private caches such as interconnection
network conflicts (only if the cache is placed adjacent to primary memory), memory
access contention and access delays are present in this solution. More information on

the shared cache solution may be found in [22].

2.1.1. Classical Solution

In the classical solution, all remote caches are informed of a block modification
by receiving a invalidation signal that is broadcast by the cache of the requesting pro-
cessor. Special invalidation busses that connect each cache to all other caches in the
system are used for this broadcast. This scheme is usually used in conjunction with

the write-through write policy. The invalidation traffic increases dramatically as the

16

number of processors increase. Consequently, this method becomes prohibitive for
systems with more than two processors. This solution has been implemented on the

IBM 370/168 and 3033 machines (dual processors).

2.1.2. Broadcast Protocols

The broadcast protocols are a compromise between the broadcasting on invali-
dations to all processors on every write access (the classical solution) and the inhibi-
tion of all ineffective invalidations. All protocols in this category are used on mul-
tiprocessors with bus architectures. Each cache can monitor the write requests of
other caches by watching the bus. The remote blocks may be updated or invalidated.
If the remote blocks are updated, the implementation has to be designed to prevent
them from crossing. Updating the blocks require more data transfers than invalida-
tions; however the blocks remain in the cache so the cache performance is not
degraded as with invalidations. Broadcast protocols require a dual directory system
to service processor and bus requests. They offer the advantages of modularity and

extensibility of system design.

Broadcast implementations include the write-once scheme [23], and an exten-
sion (the CMU protocol) [24], the Illinois protocol [25] an economical solution [26],
ownership protocols [27,28], the Firefly and Dragon protocols [10], a solution utiliz-
ing lock states for synchronization [29] and cache coherence support by the IEEE
Futurebus [30]. A performance evaluation of several bus protocols is presented in
[10]. The following sub-sections briefly describe a few broadcast protocols. A more

detailed examination is found in the literature.

17

2.1.2.1. The Write-Once Protocol

In the write-once scheme, an initial write to a block updates this block in main
memory. All subsequent writes are only written to the cached block. The block is
updated in main memory when it is replaced or when a remote cache requests a copy.
This scheme is an integration of the write-through and write-back write policies. All
proccessor writes cause invalidations of the block if present in remote caches. Main
memory supplies the copy of a block to a requesting cache unless it has been
modified two or more times in a remote cache. In this case, the remote cache supplies

the block and it is also concurrently updated in main memory.

This scheme does not take full advantage of the bus architecture. For example, if
a cache requests a copy of a block that is present and unmodified in a remote cache,
main memory supplies the data. A faster implementation would allow the remote
cache to supply the data. This scheme is used in the Illinois protocol discussed below.
Also, this protocol does not distinguish between a read-only block that is shared and
one that is exclusive. This results in possible unnecessary invalidation signals broad-
cast on the bus. Furthermore, if a block is modified more than once, overhead is

incurred as a result of the extra main memory update.

An extension of the write-once protocol is the CMU protocol outlined in [24].
In this scheme, a distinction is made between a block that has been invalidated ina
cache and one that was replaced or never present. If a block has been invalidated its
target address is still present in the cache directory. If a cached block is invalidated or

shared, the corresponding processor’s write request will generate a bus write, updat-

18

ing memory. All cache directories having the target address of this block also read
the data from the bus. All bus reads also update invalidated cached data. This
scheme dynamically defines a block as private if two or more write requests to the
block occur without any remote requests to access the block . This protocol is
optimized for efficient operation when one process modifies a data block to be read

by several remote processes.

2.1.2.2. The Illinois Protocol

The Illinois protocol [25] is a low-overhead cache coherence solution using the
write-back write policy. The state of each cached block is incorporated into each
cache directory. No status information is associated with main memory. A cache miss
results in a read broadcast to all caches and main memory. If the request was a write,
an invalidation signal is also broadcast. If the block is located in a remote cache, that
cache will supply the block. If several remote caches have copies of the block, a
priority scheme chooses one cache to supply the data. In either case, memory is inhi-
bited from supplying the data. If the remote block has modified the block resulting in
a cache-main memory inconsistency, then main memory is concurrently updated. If a

processor issues a write request all remote caches are invalidated.

2.1.2.3. The Ownership Protocol

In the Synapse’s ownership protocol [27], each cached block has an associated

owner. This owner is main memory if the block is shared or a cache if private. The

¥*
modifications may be made to define a block as private if x (x>=2) or more non-interleaved
write requests are made to the block

19

owner always has the latest copy of the block. If a processor issues a read request to
a remote block that is private, the remote cache sends a busy acknowledgement to the
requestor, updates and passes ownership to main memory and invalidates its copy.
The requestor then re-issues its request. This protocol does not fully utilize the bus
broadcast capabilities The Berkeley protocol [28] is also an ownership protocol. Like
the Synapse protocol, the owner always has the latest copy of the block and only the
owning block allows data modification. Unlike the Synapse protocol, when a proces-
sor requests to read a block owned by a remote cache, the remote cache supplies the
data to the requestor. The data is not written back to main memory until the owned
block is replaced. This insures a reliable system operation because although data is
inconsistent with main memory, several copies of the modified block exist in the

private caches.

2.1.3. Directory Protocols

Directory protocols maintain block states in a central or distributed directory as
well as in local cache controllers. These protocols have been proposed for use pri-
marily in multiprocessor systems with full-crossbar interconnection networks. Proto-
cols utilizing global directories are discussed in [31, 32, 33,34]. Although single bus
protocols provide a more natural and faster meihod of maintaining coherence for
sequential main memory accesses, distributed directory protocols provide concurrent
main memory accesses resulting in reduced contention and possibly better overall
system performance. The coherence protocol simulated is based on the directory

method for the full crossbar network and a directory/broadcast protocol for the single

20

bus architecture.

2.2. Coherence Protocol Simulated

The cache coherence protocol simulated is based on the presence flag technique
[32]. A cached block may be in one of four states as outlined below (a write-back

write policy is assumed):

(1) Invalid (INV): a block is not in the cache or it has been invalidated.

(2) Exclusive Read-only (EX): a block is located in only one cache and it
has not been modified.

(3) Read-only Shared (RO): a block is located in 2 or more private caches
and all copies are consistent with main memory.

(4) Exclusive Read-Write (RW): a block is located in only one cache and it
has been modified resulting in a cache-main memory inconsistency.

A distributed global directory consisting of P+1 bits for each main memory block is
also used. The P presence bits corresponds to the P private caches in the system. If a
block is located in a cache its corresponding presence bit is set. An additional modify
bit is included to denote a cache-main memory inconsistency. An example of a distri-

buted directory implementation is given in [9].

Since the global directory is distributed, is it assumed to be part of the memory
controller of each main memory module. Commands from each cache controller (CO)
to the memory module controller (MC) are used to implement the coherence proto-
col. These commands, outlined in Tables 2.1 and 2.2, are extensions to the commands

given in [31].

When a proccessor attempts to modify data, it has to verify exclusive access to

it. The operation used in this verification process is referred to as a cross-interrogate

21

COMMAND DESCRIPTION

EXCLUSIVE READ issued as a result of a write miss.

READ issued as a result of a read miss.

REQUEST EXCLUSIVE | issued when the processor requests to modify a block
presently in state RO.

REPLACE EX,

REPLACE RO issued as a result of a block replacement. This signals
a global table modification.

REPLACE RW issued as a result of block replacement. This signals
global table modificationand a main memory update.

MODIFY EXCLUSIVE issued as a result of the local modification of a an EX

block. This results inthe MC setting the modified bit in
the global directory.

Table 2.1 Commands from the Cache Controller to the Memory Controller.

COMMAND DESCRIPTION
INVALIDATE RW issued as a result of the REQUEST EXCLUSIVE
command or a write request from an I/O controller.
INVALIDATE EX
INVALIDATE RO occurs as a result of the EXCLUSIVE READ or

REQUEST EXCLUSIVE (INVALIDATE RO only)
commands or a write request from an I/O controller.
When the memory controller receives the RE-
QUEST EXCLUSIVE command it searches the
central directory to determine the caches owning a
RO copy of the block. This signal is simultaneously
sent to the CCs of these caches. A similar process
occurs for the EXCLUSIVE READ and /O con-
troller commands. The MC then waits until an ack-
nowledgement is received from these CCs before
asserting the RO->RW signal.

RW->R0O CHANGE

occurs as a result of the READ command from a
CC and a set modified bit.

RW->EX CHANGE

occurs as a result of a read request from an I/O con-
troller and a set modified bit.

RO->EX CHANGE

issued after the replacement of all but one RO copy
of a block.

RO->RW CHANGE

used as an acknowledgement signal for the RE-
QUEST EXCLUSIVE command. The signal is as-
serted after all INVALIDATE RO signals have
been acknowledged from the CCs.

EX->RO CHANGE

occurs as a result of the READ signal, a single set
presence bit and a reset modified bit.

Table 2.2 Commands from the Main Memory Controller to the Cache Controller.

22

23

(XI). A description of all XIs used in this protocol as well as the CC and MC signals
used in their implementation is given in Table 2.3. The three basic XTs are XI change
state (XICS), XI invalidate (XI-INV) and XI cast out (XICO). The XICS has the
lowest performance penalty. This operation modifies the global and remote cache
directories. XICS operations include RO->EX and EX->RO. The XI-INV (INV-RO
and INV-EX) results in miss ratio degradation in addition to the directory
modifications. The XICO (RW->RO, RW->EX and INV-RW) is a special invalidate
and state-change operation that causes a main memory cycle penalty as a result of
implementing the write-back write policy. This penalty is in addition to the global
and remote cache directory modifications and a possible miss ratio degradation
(INV-RW only). For bus implementations, a block is updated in memory con-

currently with its placement in the cache initiating the RW->RO.

Two additional operations that result in performance overhead (but no remote
cache directory modifications) are EX->RW and RO->RW. These operations set the
modify bit in the global directory when a local cache possessing a valid copy of a
block attempts to modify that block. The CC/MC signals defining these operations
are MODIFY EXCLUSIVE/EX->RW CHANGE and REQUEST EXCLUSIVE/RO-
>RW CHANGE respectively. All global and remote directory modifications occur in
read-modify-write cycles.

The state diagram illustrated in Figure 2.1 shows the coherence protocol imple-
mentation for block i in cache ¢, (1<k>P). The state of a block is changed as a result
of one of four types of events; a local read, a remote read, a local write and a remote

write access. A local read or write to block i occurs when the processor associated

24

X1 COMMANDS* DESCRIPTION PENALTY
Xics changes the state of a global and remote
RO->EX replace RO remotely cached block cache directory
RO->EX CHANGE modification
EX->RO read
EX->RO CHANGE
XI-INV invalidates remote copies | global and remote
INV-RO exclusive read or of a block cache directory
request exclusive modification, miss
INVALIDATE RO ratio degradation
of remote cache
INV-EX exclusive read
INVALIDATE RO
X1co special cases of XI-INV global and remote
RW->RO | read and XICS causing the cache directory
RW->RO CHANGE | greatest performance modification, a main
penalties memory update (CO)
RW->EX | read (VO only) and the miss ratio
RW->EX CHANGE degradation of a
remote cache (INV-RO
INV-RW exclusive read only)
INVALIDATE RW

*MC commands are capitalized

Table 2.3 Table of Cross-interrogates.

with the cache containing the block requests to read or write the data, respectively. A

25

remote read or remote write access occurs when any other processor requests to read
or write the data in the block i. All remote events cause state changes as a result of
receiving some type of XI (this excludes blocks in the invalid state). A local event
may or may not cause the CC to send a XI. Some state change operations produce

event/XI pairs as shown in Figure 2.1.

Three cache events signal the operation of the cache coherence protocol. They
are a read miss, a write miss and a write hit. The procedures used to maintain coher-
ence for each event are discribed below. All processor reads and writes are assumed

to be globally performed as outlined in [35].

Read Miss. When this event occurs the global directory is consulted
to check for possible copies of the block in a remote cache (full
crossbar only). This directory is also updated to reflect the presence
of the missed block. The local valid bit for the requested block is
also set for the associated block frame in the cache directory. If the
block is not present in any cache (all presence bits for the block are
cleared in the global directory) then the local state of the block is set
to EX and the block is transferred from main memory to the cache.
For bus architectures, if a remote cache contains the block, it sup-
plies the data to the requesting cache. If several remote caches have a
copy of the block a priority scheme chooses one cache to supply the
block.

If the global state of the block is EX then a XICS (EX->RO) occurs.
If the global state is RO no remote cache directory action is needed.
In both instances, the local state for the block is set to RO and the
block is transferred from main memory (or a remote cache for single
bus architectures) to the cache. If the global state of the block is RW
the cache directory executes a XICO (RW->RO) operation. The
block is then transferred from main memory to the cache and its
local state is set to RO.

26

LR and NP
A\
RWARR (INV RWA /XI-INV-R EX JLR

WA/XI-INV-R
LW,
RWA/XICO-
RR/XJCS-R
L. W/1
- LW/XI-INV-S
LRLW @ i — 1 RO JLL,LR
RR/XICO-R

LR -local read

RR - remote read

LW -local write

RWA - remote write access

S (R) - signal sent (received)

P - block is present in at least one remote cache
NP -not P

1-if P then XI-INV-S
2 - if P then XICO-S (RW) or XICS-S (EX)

Figure 2.1 State Diagram of Coherence Protocol.

Write Miss. A write miss causes a global table lookup and a possible
update. If the global state of the block is INV it is set to RW. If the
global state is RO, one or more XI-INVs (INV-RO) are executed. A
XICO (INV-RW) is executed if the global state is RW. In all
instances, the block is transferred from a remote cache (bus

