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Abstract

Vortex-induced oscillation during lock-in of an
elastically mounted circular cylinder is numerically modeled
herein for two-dimensional flow. The model solves the
incompressible Navier-Stokes equations for flow-fields
containing one or more moving boundaries. A body-fitted
coordinate technique 1is wused to generate a grid that
contains coordinate lines coincident with the physical
boundaries. The technigque maps each curvilinear line
segment in the physical plane to a straight 1line in a
computational plane by a chain-rule transformation. The
model allows for time-dependent transformations so that
flow-fields containing one or more arbitrarily moving
boundaries may be easily transformed to the £fixed
computational plane.

This investigation focuses on vortex-induced vibration
of a circular cylinder when the flow is laminar near a
Reynolds number of 100. Both steady and unsteady £flow
solutions are also presented for flow over a stationary
circular cylinder. The solutions for vortex-induced
oscillations are performed during lock-in (synchronization
of the vortex-shedding frequency and the natural fregquency
of the elastically mounted cylinder)’for different amounts
of structural damping and different ratios between the
structural natural frequency and the stationary cylinder

vortex shedding frequency.

ii



Special attention is given to the controversy presented
by several experimental researchers regarding a
discontinuity in the Strouhal-Reynolds number relationship
for flow over a stationary cylinder at a Reynolds number
near 100. Results of a test attempting to find two Strouhal
shedding frequencies in this Reynolds number range are
presented. These results indicate that the discontinuity
observed in some experiments is not caused by purely fluid

mechanical effects.
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Chapter 1

INTRODUCTION
1.1 Fundamentals of Vortex-Induced Oscillaticns

Vortex shedding can occur whenever a bluff body
encounters a viscous flowing fluid. For example, consider a
fluid particle in an inviscid uniform flow-field approaching
a cylinder along a streamline. As the particle approaches
the forward stagnation point, its velocity decreases while
it experiences an increase in pressure (the Bernoulli
effect). After the forward stagnation point, the pressure
accelerates the particle downstream around the cylinder
until it reaches the widest section of the cylinder. In
this region the velocity has increased to a maximum while
the pressure is at a minimum. The increasing pressure along
the back side of the cylinder decelerates the fluid particle
until it reaches the rear stagnation point (180 degrees from
the forward stagnation point). The fluid particle arrives at
this point with the same velocity and pressure that it had
at the forward stagnation point. The pressure and velocity
of the particle along the streamline are therefore symmetric
about the axis at the widest section of the cylinder (90
degrees from the forward stagnation point), and the fluid
does not separate from the cylinder surface.

wWhen the fluid is viscous, the frictional forces on the

fluid particle in the boundary layer cause the particle to
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diffuse much of its momentum. When the fluid particle
reaches the widest region of the cylinder, it has lost
enough of its momentum such that it is unable to overcome
the increasing pressure force along the backside of the
cylinder surface. The particle's motion is soon arrested
and the pressure forces cause it to reverse direction. The
particle therefore separates from the cylinder and the
boundary layer then forms a shear layer downstream from the
cylinder. The particles in the inner region of the shear
layer move much slower than the particles in the outer
region of the shear layer (since the outermost particles are
in contact with the free-stream) causing the shear layer to
roll up into a viscous vortex. This process occurs on both
sides of the cylinder, yielding two shear 1layers that
surround a low pressure wake behind the cylinder.

Under conditions of near perfect symmetry, at
sufficiently low Reynolds numbers (less than about 40), the
two viscous vortices on each side of the dividing streamline
(see Figure 1.1-1) will remain adjacent to the cylinder and
lengthen until a steady flow confiquration is reached. At
Reynolds numbers larger than 40, this flow alignment 1is
unstable, and disturbances in the flow-field (such as
gravitational effects, pressure fluctuations, surface
irregularities; etc.) cause the wvortex interactions to
become unbalanced. For example if a disturbance causes

vortex A to draw fluid from vortex B in Figure 1.1-1, the
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4
vortices become unbalanced. For Reynolds numbers larger than

about 40, this disturbance is not immediately balanced by a
disturbance to vortex B. Instead, vortex B is moved aside as
vortex A continues to draw fluid from vortex B. Eventually
vortex A will "shed" from the cylinder and move downstream.
Vortex B will then draw fluid from the region previously
occupied by vortex A until it also sheds. This process
continues, leading to an alternate periodic shedding of
vortices. Note that in the "stable" configuration only two
independent variables are required to describe the flow-
field, whereas in the "unstable" case three independent
variables are required since the flow 1is then time-
dependent.

Each time a vortex is shed from the cylinder, it is a
result of changes in the pressure and shear forces along the
cylinder surface. The fluid force on the cylinder in the
transverse direction (the 1lift force) oscillates at the
frequency of the vortex shedding cycle since the cylinder
experiences a net force opposite the direction of the vortex
that was last shed. The fluid force on the cylinder in the
in-line direction (the drag force) oscillates at a frequency
twice that of the lift force.

The characteristics of the flow-field and fluid forces
for flow around a circular cylinder depend on the free-
stream velocity U,: the cylinder diameter D: the free-

stream Reynolds number, defined by
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Re = pU,D/ u (1.1.1)

where p is the fluid density and u is the dynamic viscosity:
the length-diameter ratio (L/D): and the surface roughness.
The frequency of vortex shedding, which is the Strouhal

frequency fg, is defined by
fc =SU, /D (1.1.2)

The Strouhal number, S, is a proportionality constant, which
for a stationary body and a given geometry depends only upon
the Reynolds number. The Strouhal-Reynolds number
relationship for circular cylinders (obtained from
experimental data) is shown in Figure 1.1-2.

If the cylinder is oscillating transverse to the flow
direction at or near the shedding frequency, the vortices
will strengthen, and the correlation of the vortex shedding
along the cylinder span will increase significantly. The

vortex strength is measured by the circulation

r

§7-dc = gﬁ-(v x V)aa = ggn da (1.1.3)
c A A

where §, is the component of the vorticity vector normal to
da, and A is the area of the vortex bound by the curve c.

The vorticity vector is defined by

E =V XV (1.1.4)

The spanwise correlation is a measure of how uniform the

vortex shedding is along the span. If the shedding 1is
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7

uniform along the entire span, then each point along the
span sheds the vortex at precisely the same moment, and the
flow may be considered two-dimensional since the vortex is
parallel to the cylinder span. For low Reynolds number
flows over an elastically mounted rigid circular cylinder,
the flow may be considered two-dimensional for a length of
about 15-20 diameters along the span (Blevins [1977]).
During cylinder oscillations at a frequency near the vortex
shedding frequency, the vortex shedding frequency fg may
change from the stationary vortex shedding frequency fg,, to
the frequency of the cylinder oscillation, initiating a
condition known as "lock-in". The initiation of lock-in
depends upon both the cylinder and shedding frequencies, as
well as the amplitude of the oscillations.

When a simple spring-mounted cylinder system with a
structural natural frequency of £, is subjected to the
oscillating forces from vortex shedding, the cylinder
motions are said to be vortex-induced. When lock-in is
established for vortex-induced vibrations, the oscillation
amplitude will increase significantly. This amplitude will
grow until vortex formation at the cylinder surface is
suppressed, causino the process of amplitude growth to be
self-limiting. Large amplitude oscillations induced in
elastic structures resulting from lock-in can cause

structural failure (Blevins [1977]).



1.2 Previous Research of Vortex-Induced Oscillations

The works of Blevins [1977] and Hall [1981] contain
brief historical reviews of vortex shedding including the
musical applications of King David and Ktesibios of
Alexandria, as well as the first systematic investigation by
Strouhal [1878] who observed that the changes in Aeolian
tones generated by a streched wire were in proportion to the
wind speed divided by the wire thickness. Transverse
oscillations were observed and reported by Raleigh [1879%];
Bernard [1908] observed the relationship between the wake
period and vortex formation; and von Karman [1912] was able
to discern a regular stable pattern of alternating vortices.
The large amplitude oscillations during lock-in have current
applications in many areas including offshore structures,
heat exchangers, transmission lines and cables, pipelines,
and several areas of acoustics, and therefore recent
research has been undertaken in all of these areas. Marris
[1964], King [1979], Sarpkaya [1979], and Bearman [1984]
have all presented reviews of previous research of vortex
shedding and vortex-induced oscillations since the time of

of von Karman.
1.3 Recent Modeling of Fluid Forces

Several mathematical models have been used to simulate
the fluid forces on a cylinder during vortex shedding.

These models fall into two classes: those that compute the



9
fluid forces by modeling the flow-field and those that do

not. The models that do not solve for the flow-field itself
but simply act as models for the fluid forces are best
described as nonlinear oscillators. These models are
highlighted by the nonlinear oscillator models of Bishop and
Hassan [1964], Hartlen and Currie [1970], Skop and Griffin
[1973], Iwan and Blevins [1974], and Benaroya and Lepore
[1983], as well as the spanwise correlation model of Blevins
and Burton [1976].

Many of the flow-field models are based upon the
discrete vortex model of Abernathy and Kronauer [1962].
This model has been used for computing flow over a circular
cylinder by Gerrard [1967], Diffenbaugh and Marshall [1976],
Sarpkaya and Schoaff [1979], Stansby [1981], and Stansby and
Dixon [1982]. Most of the recent discrete vortex models such
as that of Sarpkaya and Scholaff are based upon potential
flow and boundary layer interaction, rediscretization of the
shear layers, and dissipation of the circulation. These
models give good values for the fluid forces on an
elastically mounted cylinder with linear damping, but only
approximate the flow-field itself. Fluid phenomena such as
the interaction of the vortices are disregarded, and the
dissipation of circulation is only approximated.

The flow-field analysis during vortex-induced
oscillations is best obtained by solution of the time-

dependent incompressible Navier-Stokes eguations for flow
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over a moving cylinder, since these are the equations that
govern the fluid motion. Numerical solutions can uncouple
the fluid and structural interaction and update the fluid
forces and cylinder motion at each time step. The pressure
and shear forces obtained from the flow solution along with
the structural forces determine the cylinder motion, whereas
the cylinder velocity determines the fluid no-slip boundary
conditions. The accuracy of numerical simulation is
governed mainly by the size of the time step and the
accuracy of the Navier-Stokes solution at each time step.
Both Blevins [1977] and Sarpkaya [1978] outline the
limitations of Navier-Stokes solutions including: Reynolds
number size (usually restricted to laminar flow): number of
time steps: and number of grid blocks for three dimensional
simulations, all of which are related to computational cost.
However, numerical modeling of flows even at low Reynolds
numbers, can provide researchers with a better understanding
of vortex shedding and vortex-induced oscillations. Since
great progress in computational speeds of large computers
has been made in recent years, it is reasonable to expect
the limitations outlined above to be decreased.

Hurlbut et. al. [1978,1982] adapted the fixed cylinder
incompressible Navier-Stokes solver of Swanson and Spaulding
[1578] to simulate numerically the flow over a cylinder
undergoing both in-line and transverse oscillations in two

dimensions. They presented results for Reynolds numbers
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from 1 to 100 and amplitude ratios from 0.1 to 2.0 where the

amplitude ratio is defined as

Ap = A, /D (1.1.3)

where AY is the transverse amplitude. Lecointe and Piquet
[1984] solved the Navier-Stokes equations for in-line
oscillations at Re = 200 during lock-in. In both numerical
investigations, the motion of the cylinder was specified,
i.e. the motion was therefore not vortex-induced, and both
used a logarithmic grid transformation that restricts the

analysis to a single circular cylinder.
1.4 Current Investigation

The objective of the current investigation was to
develop and implement a numerical method for modeling fluid
flow over a spring-mounted cylinder experiencing vortex-
induced oscillation. The method was to be able to model
several bodies 1in the flow-field, model cylinders with
multiple degrees of freedom, allow for non-circular bodies,
and be easily extended to three dimensions. In the
simulations performed in this investigation, the cylinder
was selected to be rigid and was elastically mounted with
linear damping. These criteria were chosen so as to provide
a "first approximation” to the dynamic structural
characteristics of a cylinder of finite span. Note that the

general method does not restrict the cylinder to be rigid,
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nor does it restrict the spring or damper to be linear.
Chapter 2 of this study presents the numerical method
developed to meet these objectives, including the body-
fitted grid generation method and the attributes of the
Navier-Stokes solver. Chapter 3 discusses results for flow
over a stationary cylinder while Chapter 4 presents results
for vortex-induced cylinder motions in the transverse
direction. All computations were performed at a Reynolds
number of 100 in order to compare the results with those of
previous numerical investigations as well as to investigate
the current controversy of a possible Strouhal-Reynolds
number discontinuity near this Reynolds number. This
controversy is discussed in Chapter 4. The oscillating
cylinder simulations were performed with a mass ratio of

5.0, where the mass ratio is defined by

M, = m, / p D? (1.1.4)
(m. is the cylinder mass per unit length along the span).
Simulations at this mass ratio were found to reach steady
periodic conditions much more quickly than one attempted at
a mass ratio of 100.0. Finally, the summary, conclusions,

and recommendations for future research are discussed in the

section following Chapter 4.
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Chapter 2

SOLUTION PROCEDURE
2.1 General Algorithm
The general algorithm used in this project is:

1) 1Input flow and structural parameters (Reynold's number,
free-stream velocity, fluid density, viscosity, cylinder
mass, spring constant, damping constant, etc.).

2) Set initial cylinder position and generate initial grid.

3) Set initial flow boundary conditions on cylinder and
compute initial flow-field such that v.V=0.

4) Generate body-fitted coordinate grid for the cylinder
position at the current time step.

5) Solve Navier-Stokes egquations at the current time step.

6) Compute fluid forces on cylinder at the current time
step.

7) Update cylinder position for next time step.

8) Update cylinder flow boundary conditions for next time
step.

The first step of the algorithm allows the user
considerable flexibility in choosing the flow and structural
problem to solve. The program should handle the Reynolds
number range when the entire flow-field remains laminar
(about 40 < Re < 190).

Step 2) establishes

ot

he initial position of the

cylinder with the center at the origin, and generates an
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initial body-fitted coordinate grid using the local

exponential interpolation technique discussed in Section
2.2. The grid points on the cylinder boundary are spaced
with a constant angular increment, as is the ellipse that 1is
used to approximate the outer free-stream boundary.

Step 3) establishes an initial flow-field that
conserves mass and satisfies the no-slip boundary condition
at the cylinder surface, as well as the free-stream boundary
condition on the outer boundary. To conserve mass, the
velocity field must satisfy the equation for mass

conservation in an incompressible fluid
vV =0 (2.1.1)
which in [x,y] space is

ou ov
—_— + — =0 (2.1.2)
38X oy

and in [r,6] space is

+ =0 (2.1.3)

Steps 4) and 5) constitute most of the
computational work at each time step and are discussed in
Sections 2.2 and 2.3 with further detail given in Appendices
A and B. Step 4) establishes the computational grid in each

time step and may be skipped in simulations in which the
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cylinder stays fixed. Step 5) solves the unsteady,

incompressible Navier-Stokes equations in two-dimensions at
each time step using a fully implicit finite-difference
scheme.

Step 6) computes the fluid forces on the cylinder at
each time step. These pressure and shear forces are passed
to steps 7) and 8) which explicitly evaluate the new
position and velocity of the cylinder from Newton's second
law of motion. For example, a cylinder experiencing
vibration in the y-direction would have its position and

velocity updated as:

g™ = gP x (v (at) + 1/2(a™) (at)?
+ 1/6(3M (at)3 (2.1.4)
1 o oM s (aP)(at) + 1/2(3™)(at)? (2.1.5)

where: a" = [Fyn - k(y™*e -y; - cv™) 1 / mg (2.1.6)
n = implies time step n

j = jerk = (a" - a"l)/at

F, = the 1lift force

k = spring constant

¢ = structural damping coefficient

y; = initial y-coordinate of cylinder postion

Equations (2.1.4) and (2.1.5) are Taylor series expansions
about time step n and assume constant jerk at - each time

step.
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For a moving cylinder, steps 4) through 8) are repeated
at each time step until a constant amplitude and period of
the cylinder motion is established. For a still cylinder
problem with steady boundary conditions, steps 4, 7, and 8
may be omitted at each time step, while steps 5 and 6 are
repeated until the oscillating fluid forces have a constant

amplitude and period.

2.2 Grid Generation

The computational region was discretized by a body-
fitted curvilinear coordinate system similar to the one
introduced by Thompson et al. [(1974]. This grid generation
method produces a grid containing coordinate lines
coincident with all boundary contours (regardless of the
location or shape of the boundary), and eliminates
interpolation when the boundary is curved. The technique
has been used in several previous fluid flow calculations
including those of Thompson and Shanks [1977], Haussling and
Coleman [1977], and Thames et al. [19771].

The two-dimensional body-fitted coordinate technigue
consists of a coordinate transformation from the physical
plane to a rectangular computational plane. Figure 2.2-1
shows a two-dimensional region D in the physical plane
bounded by two simple closed contours of arbitrary shape I'j
and Ty, and the mapping of region D onto the computational

plane, region D*. The curved boundaries Iy and Ty are
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mapped onto the straight lines Fl* and FZ*, becoming lines

of constant 5 in the transformed plane. The points Al* and
Bl* in the transformed plane must be identical, as must
points AZ* and Bz*, so that the boundaries are continuous.
This requires the branch cut of lines T3 and Ty which are
identical in the physical plane to be mapped onto F3* and
F4* in the transformed plane. Note that these lines are of
arbitrary shape in the physical plane.

Each point in the computational plane contains a
corresponding (x,y) value which specifies the mapping of
that point. The input boundary grid point 1locations
determine the (x,y) value of each point on Fl* and Fz*. For
example, if the inner boundary was a circle, the (x,y)
values of each boundary point on the circle would be input
(in either clockwise or counter-clockwise order), and the
first point would be mapped to (%,n)=(1,1), the second point
would be mapped to (f,n)=(2,1) etc., so that the (x,y)
values of each point on Fl* would be known. The (x,y)
values of the interior points (including the points on F3*
and F4* that do not lie on Fl* or Fz*) are unknown, and
determine the location of each of the interior grid points
in the physical plane. These interior values are arbitrary
except that the grid should not overlap and should be as
smooth as possible in order to minimize the truncation
errors of the finite-difference approximations (see Kalnay

De Rivas [1972]). Once the interior (x,y) values are
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specified, the body-fitted coordinate grid is established,

and the curvilinear grid in the physical plane may be
graphed by plotting the (x,y) values for each ¢ and 75 line
and connecting consecutive points on identical § or g lines.

Figure 2.2-2 shows how more than one interior body may
be present in the region. Each interior body is mapped to a
line of constant n in the transformed plane. The bodies may
move independently by changing the corresponding (x,y)
values of the boundary points in the transformed plane, and
re-computing the (x,y) values of the interior points. This
feature allows for modeling of vortex-induced oscillations
of multiple cylinders; a feature not possible with the
transformation used by Hurlbut et al. [1978,1982].

Thompson et al. [1974] computed the (x,y) values of the
interior points by requiring the § and nq coordinates to

satisfy a pair of Poisson equations:

Exx * Eyy = F A (2.2.1)

2xx * yy Q (2.2.2)

where P=P(x,y) and Q=Q(x,y) are functions used to control
the mesh spacing. 1In order to perform all computations in
the computational plane, it is the (x,y) values of the
interior points in the computational plane that are desired.
In order to compute these values from equations (2.2.1) and
(2.2.2), the equations are transformed using the chain rule

(see Appendix A.l) to give:
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aXyy = 20%gn * Ty * 3%(Px, +0x,) = 0 (2.2.3)

a¥gy 2By£n * Wag + J2(PyE +Qyn) =0 (2.2.4)
where:

a = xn2 + yn2 (2.2.5a)

B = Xp X ¥ ¥y ¥y (2.2.5b)

Y = xEZ + YEZ (2.2.5¢c)

J = %Xp Yo = Xy ¥y (2.2.54d)

Note that the set of partial differential equations to be
solved in region D must also be transformed to [£,7] space.
Solution of equations (2.2.3) and (2.2.4) with P=Q=0
(using the x and y values on boundaries I‘l* and rz* as
boundary conditions), yields a smooth grid point
distribution without grid overlap for most geometries. This
solution is simply the solution of Laplace's equation, an
equation which, with Dirichlet boundary conditions, always
yields a grid free of overlap since the equation is
harmonic. Thompson used different grid spacing control
functions (P and Q) to yield wvarious grid point
distributions (e.g. to resolve a boundary layer), but found
that many functions produced grid overlap. Grid overlap
occurs because the generating equation is no longer
harmonic, and its solution may contain extrema in the
interior of the field. Thompson also found that grid
spacing control functions that worked well for one problem

might produce grid overlap or poor mesh spacing for others.
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Some researchers have overcome this problem by coupling the
grid spacing control functions to the set of partial
differential equations to be solved yielding an adaptive
grid (see Dwyer et al. [1980] or Oujesky [1985]). Other
researchers have used different types of partial
differential equations to compute the interior coordinate
values such as the hyperbolic partial differential equation
method of Steger and Sorenson [1980].

All of the methods for computing the interior
coordinate values mentioned above require the solution of a
set of partial differential equations. For adaptive grids,
or problems with moving boundaries (such as the motion of a
cylinder due to vortex shedding), this reguires several
solutions of the partial differential equations used to
establish the grid. This can be computationally expensive,
and for most problems, an algebraic method for computing the
grid point distribution will give similar results at a
fraction of the computational cost of partial differential
equation methods.

In this investigation an algebraic technique was used
to generate the type of body-fitted coordinate grid needed
for external flow over one or more moving bodies. The
technique consists of a 1local exponential interpolation
between an inner and outer boundary to yield a grid
containing a high concentration of grid lines near the inner

boundary. The grid lines are restricted to be orthogonal at
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both the inner and outer boundaries in order to minimize
truncation error at these locations due to one-sided
differencing (see Thompson and Mastin [1985]). Appendix A.3
explains this algebraic grid generation technique in detail
for flow over a single cylinder. Figures 2.2-3a-c show the
grid generated by the above algebraic technique for flow
over a single still cylinder, while Figure 2.2-4 shows the
grid when the cylinder in Figure 2.2-3c has been displaced.
The grid size is 40x40 with the boundary points on the
cylinder and the outer boundary spaced at even angular
increments. The outer elliptical boundary wused to
approximate the free-stream was given a major axis (the
incoming flow direction) radius of 40 cylinder diameters and
a radius of 25 cylinder diameters along the minor axis.
These sizes were chosen to approximate the free-stream by
placing the outer boundary as far from the cylinder as
possible, while still retaining enough grid points near the
cylinder to resolve accurately the flow detail 1in the

boundary layer.
2.3 Navier-Stokes Solution Procedure

The Navier-Stokes equations for unsteady incompressible

flow of a Newtonian fluid in [x,y] space are:

up + uuy * vu, = “py ¢ (Uyy + uyy)/Re (2.3.1)

<
+
c
<
+
<
<
1

. . y = Py * (veg * vyy)/Re (2.3.2)






