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ABSTRACT

DYNAMIC RHEOLOGICAL STUDIES OF
COAGULATION AND FIBRINOLYSIS

by
John Paxton Kirkpatrick

Dynamic measurements of the mechanical properties of
recalcified plasma were performed using a Weissenberg rheo-
goniometer in the oscillatory mode with a parallel platen
geometry. This technique yields the dynamic shear storage
and loss moduli (G*, G") of the material.

Coagulation occurred earlier and the maximum storage
modulus (G'max) was an order of magnitude greater for recal-
cified PRP than PFP. While G’ . was linearly proporticnal
to fibrinogen concentration in PFP, a 50 percent decrease in
fibrinogen concentration in PRP resulted in a 20-25 percent

reduction 1n G max®

G'max of PRP was depressed in the presence of agents
which inhibit platelet metabolism (KCN + 2-deoxy-D-glucose},
elevate intraplatelet cyclic AMP levels (Dibutyryl CAMP) , or
disrupt the contractile mechanism (cytochalasin B). Cyto-
chalasin B innhibited clot retractiom, also.

At concentration of cytochlasin B where G'max and

clot retraction were reduced, ADP-induced and collagen-
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tonin release were not
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impaired. It appears that the release reaction is not



absolutely dependent on cytochalasin B - sensitive microfil-
aments.

Fibrinogen degradation products (FDP) were produced
by incubation of PFP with streptokinase (SK). Equal volume
mixtures of fresh PFP and PFP incubated with 100 u/ml SK ex-
hibited increased thrombin times. Fibrin monomer aggregation
tests indicated that FDP inhibit the thrombin-fibrinogen in-
teraction. The mixtures containing the 3 minute incubation
digest showed significantly higher G' . than control
samples. The decrease in G' . oT thrombin time was seen at
10 u/ml SK.

Equal volume mixtures of fresh PRP and PFP incubated
previously with 100 u/ml of SK showed decreased G’max for all
incubation periods. The reduction in G'max (60-70%) was sig-
nificantly greater than that caused by a decreased fibrinogen
concentration. Tests with cytochalasin B and FDP suggest the
decrease in clot strength was due to an inhibition of the
fibrin-platelet interaction. Platelet aggregation to ADP,
thrombin, and polymerizing fibrin was not impaired in the
presence of FDP.

SK added to coagulating plasma had little effect at
2 concentration of 10 u/ml SK but resulted in complete and
rapié"iysis at 20 u/ml. Poorly crosslinked clots were more
susceptible to SK-induced lysis than normal fibrin clots.

Prothrombin and partial thromboplastin times and the

+ime between recalcification and the onset of coagulation

’-I
b
e



were prolonged in plasma from subjects receiving warfarin.
A mathematical model of coagulation fitted to the data gave
values for kinetic parameters consistent with the experimen-
tal results.

An increased rate of coagulation and a decreased

G'pax Were found in frozen and lypholised PFP compared to

fresh plasma.
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I. INTRODUCTION

In the study of blood coagulation, accurate and quan-
titative measurements of the biochemical and physical proper-
ties of forming clots have been difficult to‘obtain. The
introduction of the Weissenberg rheogoniometer and linear
viscoelastic theory provides a method of measuring the dy-
namic mechanical properties in vitro of coagulating plasma.
From this quantitative data, it is possible to predict and
explain some of the in vivo effects of trauma or chemical
agents on the human coagulation system.

The primary objective of this work is to study the
effects of an activated fibrinolytic system or the products
formed by the enzymatic degradation of fibrinogen or fibrin
on coagulating plasma.

Dynamic rheological measurements will be employed to
determine the rate and extent of clot formation in these
systems. The effect of these degradation products on plate-
let function and the platelet-mediated contractile force will
also be investigated.

rable 1if
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While the induction of fibrinolysis is des
clots are to be dissolved, the degradation products have been
implicated as inhibitors of coagulation. Thus, fibrinolysis

1



and its interaction with the hemostatic mechanism are of
clinical importance.

In addition, this work will present data from experi-

ments on

1. The effect of inhibitors of platelet fumction (3;5'-
dibutyryl cyclic AMP, 2-deoxy-D-glucose, cyanide,
cytochalasin B) on the coagulation of platelet-rich
plasma.

2. The coagulation of platelet-free plasma from sub-
jects receiving warfarin anticoagulant therapy.

3. The effect of freeze drying platelet-free plasma on

the rate and extent of clot formation.

Besides the rheological measurements, the results of
biochemical and clinical assays will be employed to provide
a more complete understanding of the effects of these agents
and treatments.

In the remainder of this chapter, a brief review of
coagulation, fibrinolysis, platelet structure and function,
experimental methods for the study of coagulation, and the

models proposed for the clotting process will be presented.

I.1 Coagulation

Coagulation is essentially the polymerization and

crosslinking of a protein monomer, fibrin, formed from the
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circulating blood protein, fibrinogen. In this section, the
initial enzymatic activation of coagulation known as the co-
agulation cascade, fibrinogen, fibrin polymerization and

crosslinking, and anticoagulation will be discussed.

Coagulation Cascade

Coagulation proceeds by the sequential activation of
circulating zymogens in the blood and results ultimately in
the conversion of fibrinogen to fibrin (1,2). The enzymes
of the "coagulation cascade" along with calcium and fibrino-
gen are termed coagulation factors and denoted by Roman
aumerals (Table I.1). Coagulation which occurs because of
surface contact proceeds by the intrinsic system and when
initiated by Factor VII and tissue activator takes place
through the extrinsic system (Figure I.1). The term ""cas-
cade" results from the observation that enzyme activation
occurs sequentially (3). For example, in the intrinsic sys-
tem, Factor XIIa, initially activated by surface contact,
alyzes the conversion of Factor XI to XIa, which in turn
converts Factor IX to IXa. In the presence of Factor VIII,
Factor IXa activates Factor X and so on. Thus, the coagula-
tion cascade may act a@sca biological amplifier, and activa-
tion of 2 small quantity of enzyme initially may resulit in
significant fibrin polymerization (3).

In the control of the ccagulation cascade, feedback



Factor Synonyms
I Fibrinogen
II Prothrombin, prethrombin
II1I Tissue factor, tissue thromboplastin
iv Calcium
\' Proconvertin, SPCA, autoprothrombin I
(VI) Not assigned
VII Proconvertin, SPCA, autoprothrombin I
VIII Antihemophilic globulin (AHG), antihemo-
philic factor (AHF), platelet cofactor I
IX Christmas factor, plasma thromboplastin
component (PTC), autoprothrombin II, plate-
let cofactor I
X tuart-Prower factor, Stuart factor, aute-
prothrombin III
XI Plasma thromboplastin antecedent (PTA)
XI1I Hageman factor
XIII Fibrin-stabilizing factor, Laki-Lorand fac-
tor, fibrinase
Table I.1 International nomenclature for blood coagulation
factors. Activated factors are designated by an
"a" after the Roman numeral.
(From: Williams, W. J., E. Beutler, A. J. Erslev, and R.W.

Rundles, Hematologyv, p. 1226, McGraw-Hill, New York, 1877.)
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effects are important (4). Thrombin may act in an autocat-

alytic role and alter Factor V and VIII such that prothrom-
binase and Factor X activation are stimulated (5,6). Inhibi-
tion also significantly affects the rate of coagulation.

The principal inhibitors in the circulation are antithrombin
III, an inhibitor of the serine proteases, thrombin (7),
Factor Xa (7), Factor IXa (8), Factor XIa (10), XIIa (11),

and az-macroglobulin, 2 thrombin inhibitor (12). In additionm,
circulating activated coagulation factors are removed by the

liver (4).

Fibrinogen

The circulating precursor of the fibrin monomer is
fibrinogen, a protein of approximately 340,000 MW (13). The
fibrinogen molecule is composed of three pairs of chains -
@A, 8B and y - having molecular weights of about 64,000
57,000 and 48,000, respectively (14). These peptide chains
are linked by 28-29 disulfide bridges (15) and by electro-
static interactions and hydrogen bending (16). At physio-
logical pH (7.4-7.8) the fibrinogen molecule is globular with
2 diameter of 22-23 nm and a radius of gyration of 11 nm
(16,17). The conformation is determined primarily by the

strong electrostatic attraction be

ct

ween the negatively-
charged N-terminal disulfide knot (18) and the positively-

charged C-terminal end of the Aa, Bg, and y chaims (Figure

I.2).
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Figure I-2.

Schematic representation of the flbrlnogen molecule. The
molecule is 22 mm in diameter, of spherical shape with 2
two-fold axis of symmetry. The chain length is approxi-
mately represented according to their molecular weight
(Ac: 63,000, Ba: 55,000, y: 48,000). The C-terminal parts
of these chains are folded around the N-terminal disulfide
knot (close-dotted area). This morphology is stabilized
by intermolecular interactions of electrostatic nature im
the A and B peptide region in particular. A large portion

of the crosslinking sites is masked.

c , crossiinking sites {acceptors aznd domors): the chain
sites are placed arbitrarily.
, interchain dis lfi bridges in the N-terminal disul-

fide knot.
--- , disulifide bridges of Fragment D, arbitrarily piaced.



Thrombin

Fibrinogen :22 nm
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Monomer

Fibrin

Figure I-3.

Enzymatic polymerization of fibrinogen and fibrin crosslink-
ing. The cleavage of fibrinopeptides A and B reduces the C-
and N-terminal interactions. The structural changes that
foliow expose the sites involved in the formation of the
linear fibrin array (hydrogen and electrostatic bonding and
hydrophobic interactions) and crosslinking (covalent bonding).

(From: Hudry-Clergeon, G., C. Marguerie, L. Pouit,
and M. Suscillom, "Mcdels proposed for the fibrinogen mole-
cule and the polymerization process,' Thromb. Res., §, 533-
541 (1975).)




Fibrin Polymerization and Crosslinking

Fibrinogen is converted to fibrin by the cleavage of
fibrinopeptides A and B (the negatively charged N-terminal
ends of the Az and B8 chains) by thrombin (19,2C). With the
electrostatic interaction between the C- and N-terminals no
longer present, the molecule unfolds to yield a "squashed
T-shaped" structure (see Figure I.3). These fibrin monomers
then associate electrostatically to yield a fibrin gel con-
sisting of linear arrays of these "T-shaped" moledules (21).

Factor XIIIa is a thrombin-activated transamidase
which catalyzes the formation of e-(y-glutamyl) lysine bonds
between the a and v chains of fibrin to yield « polymers and
v dimers (22-26). A total of 6 covalent crosslinks are
formed per fibrin monomer (24). The formation of these cross-
links yields a clot of increased mechanical strength (27-30)
which is insoluble in 1 percent monochloracetic acid and 5M
urea. Crosslinking can be inhibited by clotting plasma in a
calcium-free environment (27,28) or by the use of an inhibi-
tor of traxn
formed in this manner will dissolve in urea or monochloro-

acetic acid.

Anticoagulation
To prevent the clotting of blood, anticoagulants are
employed which have various modes of action. For most

in vitro studies, a calcium chelator, such as trisodiun
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citrate, acid citrated dextrose, or EDTA, is used. Because
calcium is a necessary cofactor in the coagulation cascade,
the chelation of this divalent cation prevents activation of
the coagulation factors. If blood is anticoagulated with
3.8 percent tridosium citrate, a weak calcium chelator, it
may later be recalcified to reactivate the coagulation system
and allow clotting to proceed.

For in vivo anticoagulation therapy, heparin and
dicumarol are the drugs principally administered. In concert
with antithrombin III, heparin inhibits thrombin and
Factors IXa, Xa, XIa, and XIIa (8-11). The coumarin antico-
agulants inhibit the production cf the vitamin K-dependent
clotting factors, prothrombin and Factors VII, IX, and X, by
the liver (33-34). While for in vitro studies coumarin is
useless, it is often administered to patients with prosthetic

heart valves over periods of years with excellent results.

I.2 Platelets

Iz this section, 2 brief overview is given of plate-
let morphology and the role of platelets in hemostasis and
thrombosis. Platelet aggregation and the inhibition of

platelet function are also discussed.

PAPR S I N L

Platelets are disc-shaped blood cells with an average

volume of 5 to 7.5 um3 (35). In whole human blocd, the normal
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range of platelet concentration is considered to be 150-
400,000 platelets/mms. Carbohydrates are metabolized by
platelets via the Krebs' cycle and aerobic glycolysis
(36,37).

Essentially, platelets consist of three structural
zones (38). The peripheral zone consists of a unit membrane
with an exterior glycoprotein coat. It is primarily involved
with adhesion (the attachment of a platelet to a blood vessel
wall or a foreign surface) and as a catalytic surface for the
activation of coagulation factors (39). A second zone
(termed the ''sol-gel" zone by White (38)) is composed of
fibrous elements, the microfilaments and microtubules. The
first system of fibers, the microfilaments, are 50-70 & in
diameter (40) and resemble those fibers found in smooth
muscles (41,42). These filaments are believed to represent
the F-actin component of platelet actomyosin or "thrombos-
thenin" (43-46). Thus, the microfilaments are most probably

responsible for platelet contractile properties such as clot

190

vetraction (38.44). Microtubules, 250 A in diameter, fomm

a circumferential bundle beneath the unit membrane (38,41,47).
Chemical agents which depolymerize microtubules do not in-
hibit platelet-mediated clot retraction or contractile force,
and therefore, contractility does not depend on the presence
of microtubules (44,47,48). The role of microtubules remains

unclear, though it has been suggested that they may serve as

a cytoskeleton for the maintenance of platelet shape (38,44).
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The organelle zone contains mitochondria, granules,

and dense bodies (47). The dense bodies, primarily contain-
ing serotonin, ADP, and calcium (48) are released when plate-
lets become exposed to aggregating agents (50). This release
reaction in turn stimulates platelet aggregation and acceler-

ates coagulation (51).

Aggregation

Platelet aggregation is simply the attachment of
platelets to one another. In vitro platelet aggregation 1is
measured using the turbidimetric technique of Born (52,53).
In this method, 2 beam of light is passed through a sample
of platelet-rich plasma (PRP) and the optical density or
light transmission measured. Addition of an aggregating
agent to the initially cloudy plasma causes platelets to
cohere to each other with a consequent increase in the trans-
missivity. In vivo aggregating agents and the ones most com-
monly used in vitro are ADP, thrombin, and collagen.

Aggregation of plarelets to the addition of exogenous
ADP may be either primary, biphasic, or irreversible (54).
At concentrations of ADP sufficiently low that primary aggre-
gation occurs, platelets cohere in response to exogenous ADP
then spentanecusly disaggregate. In biphasic aggregation,
addition of ADP yields an initial aggregation of platelets
shortly followed by 2 second wave of aggregationm. This

second wave is in response to ADP secreted from the dense
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granules during the release reaction (49,55). At higher con-
centrations of ADP (~ 2um ADP for normal PRP), a single ir-
reversible wave of aggregation is seen. Also, a small amount
of normal fibrinogen must be present for ADP-induced aggrega-
tion to occur (56,57).

Addition of collagen to PRP results in an "all-or-
nothing'" response i.e., either irreversible aggregation occurs
or there is no effect (58,59). This is because collagen in-
duées the release reaction which in turn stimulates aggrega-
tion (59). Thrombin-induced aggregation proceeds by a
mechanism which remains unclear, though it probably involves
the release reaction (60). Platelet aggregation to polymer-
izing fibrin, but not fibrinogen or fibrin polymer, has also

been demonstrated (61).

Role in Hemostasis and Thrombosis
In vivo platelets perform two major functions--hemo-

static and thromboplastic (62). The former relates to the

formation o

1-+h

a hemostat

s

c

g

lug by platelets, and the latter
to platelets role in the acceleration of clotting and the
strengthening of the clot. When a blood vessel is injured,
subendothelial tissue (similar to collagen) is exposed.
Dlatelets adhere to this surface due to the presence of this
collagen-iike material and the release of ADP from damaged

cells (63). The platelet plug continues to grow after the

initial adhesion by the aggregation of platelets. Presumably
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this aggregation is potentiated by the collagen-induced re-
lease reaction. Whether these aggregated platelets release
ADP, thus recruiting still more platelets is unclear (60).
In the circulation, the hemostatic function is affected by
blood flow which generates wall shear stress and removes ag-
gregating agents from the site of injury (64).

In their thromboplastic role, platelets accelerate
the formation of fibrin clots by the release of platelet
factors (51,65). The activation of Factors XI and XII may
be enhanced by platelets, and Factor XIa protected from inac-
tivation (66). Also, the phospholipid-rich platelet membrane
possibly acts as a catalytic surface for factor activation
(67). In turn, thrombin and polymerizing fibrin induce
platelet aggregation (60,70), and thrombin's action on plate-
lets causes the release reaction (49). Thus, platelets and
the coagulation cascade exhibit a synergistic effect in the
formation of thrombi.

Piatelets interact with and attach to polymerizing
fibrin (68-70), and in vitro clot retraction occurs (71,72).
This decrease in clet size is a comsequence of platelet con-
traction and shortened fibrin chain length. In systems in
which PRP is constrained so that a change in volume of the
ciot is not permitted, an increase in the isometric tensicn
(73,74) or the dynamic rigidity (75-77) of the clot is found.
This is the result of tightening of the network by platelet

contraction (73-77). While in the presence of flowing blood,
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platelets are not distributed homogeneously throughout the
fibrin network, it is likely that the retraction mechanism
still plays a significant role in hemostasis. In vivo,
tightening of the platelet-fibrin matrix probably serves to
close a wound, and decreasing the size of a clot prevents

occlusion of blood vessels (63).

Control and Inhibition of Platelet Function

Cyclic AMP is believed to play an important role in
the control of platelet aggregation and contractility (78-81).
Addition of dibutyryl cyclic AMP (a derivative of cyclic AMP
which more easily crosses the platelet membrane) inhibits
platelet aggregation (82-84), clot retraction (85,86), and
yields platelet-fibrin clots of decreased dynamic rigidity
(86). Prostaglandin E, (PGEl), elevates the level of cyclic
AMP in the platelet (80,84,86,87) and inhibits aggregation
(82,85,87,88) and clot retraction (85,86). The effect of

PGE1 on the contractile force generated in clots formed by

O
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latelet-rich nlasma is confusing.
but studies using Factor-VIII deficient PRP in which only a
small amount of thrombin is generated, indicate that PGE de-
creases the dynamic modulus (86). Agents such as caffeine,
which inhibit phosphodiesterase and thus raise the level of
cvclic AMP, also inhibit platelet function (78,80,82). Con-
versely, epinephrine which decreases the intraplatelet cveclic

AMP concentration, promotes platelet aggregation (80,87). In






