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ABSTRACT

AN ANALYSIS OF TWO MODELS FOR PARALLEL COMPUTATION

by

Susan Conry Meyer

An analysis of ftwo models for parallel asynchronous
computation, computation graphs and marked graphs, is
presented., |t has previously been observed thatf every
computation which may be described by a marked graph may
alsc be represented by a computaticn graph. In this
thesis it is established that a broacd class of computa-
tions which may be described by compufation graphs may

also be modeled by marked graphs.,

A computation graph is a directed graph in which

\
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nterpreted as cperations and edges as
queues for data. Each gueue may receive a nonnegative
number of items as output from an operation and lose

a nonnegative number of items as input to an operation,
A marked graph is 2 special case of The Pefri net, In
a marked graph, a computetion is also modeled by a di-
rected graph. Each edge receives a single token upon
occurrence of Tﬁe event a2t its initial point and loses
a single token upon occurrence of the event at ifs

tferminal point.



Only the confrol flow of a computation graph is first
considered, disregarding the flow of deta on the queues
of the computation graph., |t is established that fhere
is always an infinite marked graph which represents the
contro! flow of a computation described by a computation
graph., Next, necessary and sufficient conditions are
determined for the existence of a finite marked graph
representation for that control structure under the
assumption that a finite bound is imposed on the length
of each queue. Then the restriction on the lengtih of fthe
queues is removed and the finife marked graph represen-
tation problem for control structure is considered in

this case as well.

Finally, tThe data flow of the computation is re-
introduced, Under the interprefation that operations
remove dafa from input lines and add date to output lines,
an infinite marked graph is found whose data flow sftruc-
ture and control flow structure are equivalent To that
of a given computafion graph. Then conditions are found
under which the infinite marked graph has a finite
marked graph representation which is both contro! and

data flow equivalent to the computation graph.



ACKNOWLEDGEMENTS

To

To

To

To

To

The author would like to express her gratitude:
Dr. J.R. Jump, without whose guidance and advice
this thesis would not have been possible,
Drs. Kennedy, Feustel, and Blattner, whose suggestions
and patience are very much appreciated,
her many friends, who have made these years a very
en joyable experience,
her parents for their encouragement over the years,
her husband, Bob, who has shared in the problems
and understands - that means more than almost

anything else.

This research has been supported by National
Science Foundation Grants GJ 750 and GJ 36471,



TABLE OF CONTENTS

| - Introduction

[I - Specification and Behavior of Computafion Graphs

2.1 Introduction
2.2 Computation Graphs
2,3 Constraint Relatio

2.4 Behavior Graphs

l{l - Finite Representation - Bounded Case
3.1 Inftroduction
3.2 Generating Sets
3.3 Finite Representation - When B Heas
No Generating Seft
3,4 Finite Representation - When B Has
a Generating Set
IV - Finite Representation - Unbounded Case

4.1 Introduction

4.2 Behavior Graphs and Generating Sets

4.3 Finite Representation - When BG Has

a Generating Set

4.4 Finite Representation - When BG Hes

at [N P S N -~
NGO veneraving Se

ns

BN
1

15

20

28

29

40

59

86

87

92

O
O



4,5 Finite Representation - CG Not Strongly
Connected with BG Having No

Generating Seft

V - Correspondence Between Computation Graphs and
Marked Graphs
5.1 Introduction
5.2 Marked Graph Data Flow Equivalent To a
Computation Graph
5.3 Computation Graphs Equivalent to Marked

Graphs

VI - Concluding Remuarks
6.1 Summary of Results

6.2 Future Research
Appendix = Marked Graphs

References

109

118

118



| - [NTRODUCT ION

This thesis is concerned with exploring the rela-
tionships which exist between two models for asynchronous
parallel computation - Karp=-Miller computation graphs [1],
and marked graphs [2], [3]. It has been observed [3], [14]
That any computation which may be represented by a marked
greph can also be represented by a computation graph. In
this thesis it is shown that a broad class of computations

representable by computation graphs may alsc be represented

by marked graphs.

1

'n informal terms, a2 computation graph represents
asynchronous parallel computations by means of a finite
tabeled directed graph, The vertices of the graph repre-
sent single valued functions which are thought of as the
various operations of the computafion. Edges then are
interprefed as queues which may contain data. These
queues operate in 2 "last in, first out"™ manner, each
queue having a unique "source" of data and a2 unique "sink"

for that data.

Associafted with each edge there are fcur parameters,

These parameters govern the way in which the aueue



represented oy each edge is constrained to operate. They
are, informally,
1) a parameter giving the number of iftems initialliy
in the queues
2) a parameter indicating how many items are
placed into each queue upon termination of the
operation at its source
3) a third parameter specifying the number of items
removed from each queue upon initiation of the
operation at its sink
4) a fourth parameter giving a threshold number
of items for each queue, This parameter plays
a vital role in the modeling of the computation,

and is explained below.

The computation is then modeled as 2 dynamic process

-h

by means of a fi

3

ing rule. An cperation may initiate
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o} centained in each gqueve di-
rected intfo that operation (fhereby serving &s sources
for its operands) is at !east as large as the threshecld
for that cueue. Thus an operaftion may occur whenever it

is "ready" to occur, and the sequencing of operations is

dependent only on the data flow of the computation.

The sequencing of operations, or events, in a marked
graph is also dependent only on the flow of data. This

model, too, is based on a directed graph. The vertices



in the marked graph are representative of events in the
computation, and the edges are usually thought of as
giving control connections between the events, There
may be any nonnegative number of markers, or tokens, on
an edge in the graph, hence the name "marked graph".

The flow of the computation is represenfed in a marked
graph by movement of markers on the edges of the graph
according to a firing rule. An event may occur whenever
there is at least one marker on each edge directed info
the vertex representing that event. Upon occurrence of
that event, one marker is removed from each edge directed
into the vertex and one marker placed on each edge

directed out of the vertex.

Extensive analysis has been carried out for each of

these models independently. Karp and Miller [1] proposed

+he computaticn greph, showed that the mcdel is determi-
4 ] Pt
nate, and derived results concerning the terminaticn of

a computation and boundedness of queue lengfhs Throughout
the computation. Reiter [4] and [S5] has analyzed a sub-
class of computation graphs, considering overall storage
requirements and scheduling of operations by introducing
a "time required for execution" for each operation. He
elsc has generalized the Kerp=Miller mode! by ailowing
the operation associated with a given node to vary as a

function of the number of tTimes that node has been



"performed" in the computation., For this generalized
model, the problems of fermination and determining the
number of fTimes a step in the computation is performed
have been considered. Adams [6], ftoo, has generalized
the computation graph., His generalization allows, among
other thing., the consideration of structured data in

the queues and a hierarchy of programs within a given

computation,

Marked graphs are a special case of Petri nets [7]
and as such have been analyzed exftensiveiy by Holt and
Commoner [2]. A problem of defermining maximal storage
requirements for a marked graph - modeled computation
has been considered by Holt, et. al. [3]. Jump and
Thiagarajan (8], [9] have also used marked graphs to
model contro!l structures for computations which exhibifT
concurrency, giving necessary and sufficient conditions
for Two such sTructures To be equivaienT as weii as
giving rules for legeily interconnecting structures of

This Type.

It should be noted that the class of computations
which can be modeled by computation graphs or marked
graphs is a restricted one. These computations may
exhibit concurrency but no conflict, hence it is not
possibie for any type of data dependent branching fo be

directly represented, There are many models which do



have properties allowing tThem to represent branching.
Among them are ihe Petri net [7], Holt's Occurrence
Systems [10], Parailel Program Schema [11], £-Graphs [12],
data flow schema [13], and Adems' model for paraliel

computations [6].

Finally, it has been observed [3]1, [14] that marked
graphs may be considered as computation graphs by simply
requiring that all the parameters (except fthe inifial
number of items in the queues) be set to one. It is
shown in this thesis that the inverse is also frue. We
may (under very mild restrictions on the computation
graph) always find a marked graph, though it may be in-
finite, representing the same computation as a given
computation graph under a suitable inferpretation.
Furthermore, this equivalence extends not just to

sequencing, but To datz flow

In our analysis, we consider both The Karp-Miller
computation graph and the computafion graph with bounds.
The latter structure is nrecisely the same as fthe former
with one exception, A fifth parameter is introduced,
imposing on each queue an arbiftrary, though finite, bound
on its length. This a<ditional restriction is signifi-
cant from a practical point of view, since in reality
there is no memory space which is unbounded. Hence any

implementation of a computation modeled by a computation



graph must have a bound on the storage it may use.

In the chapter which follows, we formally specify
both the computation graph and its counterpart with
bounds on the queue lengths. Then, in a manner similar
to that employed by Jump and Thiagarajan [8], we define
an infinite marked graph imposing the same constraints
on event occurrences as the compuftation graph. For our
purposes, the occurrence of an event in a computation

graph (bounded or not) consists of both its initiation

and its termination,

The problem of determining necessary and sufficient
conditions for the existence of a finite marked graph
having this property is then considered., Chapter {1
presents tThis analysis for the case in which bounds are
imposed on gqueue lengths, and the same analysis for the
Karp-Mitler computation graph is then seen in Chapter V.
In defermining the conditions sought, we find the concept
of a generating set for the infinite marked graph useful.
This concept is also used to advantage in [8]. In [10]
Holt, et. al. have carried out an zanalysis similar tc a
portion of ours in finding a finite Petri net fo represent

an Occurrence SysTem,

Finelly, in The fiffh chapter, we inferpref the

ncdes of marked graphs as cperavions and edges as data



flow paths, rather than simply control flow paths., With
this as an underlying assumption, conditions are given
under which a finite marked graph can be found fto repre-
sent the same computation as a given computation graph,
including data flow as well as control flow. The inverse
problem is also considered. Given a marked graph (per-
haps having more than one vertex labeled with a given
operation), we construct a computation graph equivalent
+o it in which each label for an operation appears only

once,

Chapter V! contains a summary of fthe resulfs we have
obtained together with an indicefion of scme directions
which future research might ftake. An appendix is also
included summarizing some of the basic results which have

been previously derived for marked grapns.



|| - SPECIFICATION AND BEHAVIOR OF COMPUTATION GRAPHS

2.1 {ntfroduction

In this chapter we formalize the informal descrip-
tion of computation graphs, with and without bounds on
queue [engths. We define these graphs and the sfrings
of event occurrences which give their behavior. Using
these notions, a relation is developed characterizing the
constraints imposed on system behavior by the rules of
+he computation graph. Finally, a marked graph is defined
which has the same control flow constraints as the given

computation graph.
2.2 Computation Graphs

A computation graph (with or without bounds on the
gueue lengths) may be informally described as 2 directed
graph whose verfices represent operations and edges are
interpreted as queues which may contain data words. As-=
sociated with each edge there are several parameters,
indicating tThe way in which the queue is constrained to
operate. In this way the edges give constreaints on the
order of operation occu: ~ence, rformaliy, & computation

-~k VIET

graph with bounds is defined as follows,



Definition 2.1a A computation graph with bounds (BCG) is

a 7-tuple: G = (V,E,M_,a,B,6,€) where

0

1) V is a finiTe set of vertices

2) E ¢ VxV is the set of edges

3} The parameters MO’ o, B, 6, and € are functions
from E to Z+ such that for each eck,

i) Mo(e), a(e), 6(e) < e(e) and

i1) B(e) < 8(e).t

Figure 2.1 gives an examplie of a BCG, and the counterpart
of a BCG, one without bounds on queue length is defined

formally below.

Definition 2.tb A computation graph (CG) is a 6-tuple:

¢ = (V,E,M ,c,B,08) where

0
1) V is a finite set of vertices
2) E ¢ VxV is the sef of edges

3) The parameters MO, o, B, and & are functions

from £ to Z+ such that for each eeE, Ble) =< 6(e),
Figure 2,2 is an exampie of a CG.

Thus we see that computation graphs, bounded and
unbounded, are directed graphs with the functions MO,
o, B, 8, and € (for BCG) giving the parameters associated

with each edge. These parameters are interpretfed in fthe

1ozt = {0,1,2,...}



A\
(v ,v,i

27 4
(vg,v,)

(v4,v1)

Mo(e1)=0; u(e1)=B(e1)=8(e])=a(e1)=1

Mo(e )=1; a(e2)=1; B(e2)=c(e2)=e(e2)=2

MO(83)=O, a(e3)=8(e3)=6(e3)=e(e3)=2

Mo(e4)=0; ale,)=ele,) =2; (e4)=8(e4)=1

Mo(es)=1, a(es)=8(e5)=6(e5)=€(e5)=1
EXAMPLE 1

FIGURE 2.1
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= M (e j=0; (e )=2; (e )=6(e )=3
e1 (vl,vz) 0 ell ;O e1 ; B e1 e1
= ( v_) M (e )=2; ale )=1; (e )=8(e )=2
®2 T MVprYs 0 "2 2 Ble, 2 ¢
= \ N h =1 ~l Yy=3. [a) =1 af
es (v3,«1) Mo(e3) by aleg)=3; ,,(e3) 13 “e3)
EXAMPLE 2

FIGURE 2.2
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following way for e=(vi,vJ) in E:
Mo(e) is the number of items initially in the queue.
ale) is the number of items added tc the queue upon
termination of the operation at Vie

B(e) is The number of items removed from the queue

upon initiation of the operation at v

J
6e) is the threshold. There must be at least 6(e)

items in the queue before the operation at v.
may be inifiated,
€(e) is the bound imposed on the queue length. [n
a BCG, there may never be more fthan €(e) items
in the queue.
A computation graph (with or without bounds) is a
mode! for a process. |t describes a computation which
is carried out over a periocd of time. We now specify the
way in which this mode!l describes a process. The concept
of vertex firing, which we define below, correspends vo
the occurrence of the operation represented by that vertex.
An event (operation) may not occur untii aill fhe condi-
tions necessary for its occurrence are met, and may nof
occur, in the bounded case, if a queue overflow will
resuls. The following definitions formalize this idea.

Definition 2,2 A marking M of a BCG (or CG) is a function

+

M(e) denotes the number of items in the queue e
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under marking M. The function Mg, gives the initial

marking of the computation graph.

Denote the set of edges directed into a vertex v by
I(v) and the set of edges directed out of a verftex v by

0(v). § is the set of all possible markings of a BCG

(or CG).

Definition 2.3a Let G = (V,E,Mo,a,B,e,e). A vertex veV

is firable under marking M if and only if

1) M(e) 2 8(e) for all eel(v)
and

2) M(e)+al(e) < e(e) for all eeO(v),
Remark |t should be noted that if e=(vi,vi), the opera-
tion first removes B(e) words from e then adds ale)
words to e. The bound e(e) will ftherefore not be exceeded
whenever M(e)+ale)=-8(2) < ele). For The sake of simpiiciTy
we have required that the bound be set higher than neces-

sary on edges of fthis Type.

The corresponding definiftion for +the unbounded case

is given below,

Definition 2.3b Let G = (V,E,Mo,a,B,e). A vertex veV

is firable under marking M if and only if M(e) 2 6(e)

for all eellv).

When a vertex v is fired under a marking M, a new

marking, #4', for the graph i3 produced. This marking
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is given by:

[ M(e) if e¢l(v) and ed0(v)
M(el}-B(e) if ee[I(v) = 0(v)]
M'(e) =
M(e)+qgle) if ec[0(v) - I(Vv)]
LM(e)+a(e)-B(e) if eel(v) and ec0(v)

Since a new marking is produced upon firing a vertex,

we may define a function giving this next marking.

Definition 2.4 The next marking function is a partial

function u: @xV » Q@ given as follows:
i) u(M,v) = M"' if v is firable under M and M' is
the marking produced upon firing v.

i1) u(M,v) is undefined if v is not firable under M,

It is clear that the next marking function may be
extended to a partial function u: QxV¥ - Q in the usual
way, where V¥ {s the free monoid generated by V., Using
+he standard notation, veV¥ of length Iv!

, we give that

extension beiow,

Definition 2.5 |f veV¥*, we define fthe next marking

function u: QxV*¥ - Q as a partial function:

i) u(M,v) =M if v=A, the empty string
1) u(M,V) = M' defined above if Ivi=l
Pii) p(M,v) = M" if Vv = Vooees Vo, n>1, and there is

a sequence of markings MO <.« M_such that:

1) Mg =M, M = MY, and
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2) v is firable under M;_, with
U(Mi-1’vi) = Mi for 1<is<n,

iv) u(M,V) is undefined otherwise,

We shall say that if u(M,v) is defined, v is

firable under M. Given a BCG (or CG), *then, we say that

v is a firing sequence for the BCG (CG) if and only if

u(MO,V) is defined, The firing sequences of a computa-
tion graph correspond to finite portions of the executions

studied by Karp and Miller [1].

It is immediately clear that if v is a2 firing se-
quence for a BCG or CG, then v*¥=vx is a firing sequence
for that BCG (CG) if and only if x is firable under
M! = u(MO,Cb. This fact will be used repeatedly in the

analvysis which follows.
2.3 Constraint Relations

Qur immediate objective is To find a marked graph
which imposes The same constraints on operation occurrence
as a given computation graph., Hence we are initially
interested only in the control flow of the computation,
The analysis will be done first for the case of the
computation graph with bounds. Later, the unbounded

case Will be considered.

in the anaiysis which foiiows, we restrict our

attention to those bounded ~omputation graphs in which
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each operation produces results on its outpuf queues and
removes data from its inpuft queues. The assumpfion is
therefore made that al(e)#0#B(e) for each edge in the
graph. Under this assumption, a relation is developed
which describes the constraints imposed on event

occurrence by a BCG,

We recall that a vertex v of a BCG is firable under

a marking M if and only if

1) MCe) 2 8(e) for all eel(v)

and

2) M(e)+ale) < e(e) for all eel(v).

The marking of each edge is then clearly given by:
M(e) = Mo(e)+2a(e)—k8(e)

where e=(vi,vJ), v, has fired & times, and v. has fired

1

k times.

Any relation describing constraints imposed on
operation occurrences must depend on both of the above
critferia for firing. We consider criterion (1) first
and ask (for e=(vi,vj)) how many Times v, must occur

before vj may occur for The kJrh time.

Proposition 2,1 Uncer the assumption that ale)#0, the

-Th

th
x occurrence of v, must precede tThe k occurrence of
Vj’ where e=(vi,vj), k is some integer, and

T(k=1)8(e)-M_(e)+Ble)]|

Py
]
(@)

| ale) l
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Proof:

We first show that Mo(e)+la(e)-(k-1)8(e) 2 8{e) and

+hen that Mo(e)+(2-i)a(e)—(k—l)B(e) < B(e).

Now, Mo(e)+£a(e)-Ck—l)B(e) may be rewritten as:

'(k-1)s(e)-M0(e)+e(e>‘

Mo(e)+ ale)=-(k=1)B(e), and we know
ale)

that '(k-1>s(e)-wo(e)+e<efl (k-1)g(e)-M (e)+8(e)

>
ofe) ale)

(k-l)B(e)-MO(e)+e(e)
so M (e)+

ole)~(k=-1)R(e) 2 B(e).
ofe)

Also, we see that Mo(e)+(2—1)a(e)—(k-1)B(e) may be writfen:

(k-I)B(e)-MO(e)+8(e)
M (e)+

‘O 1a(e)—a(e)-(k—1)8(e), and

ale)

{(k-l)ﬁ(e)-MO(e)+8(e)] (k—l)B(e)—MO(e)+e(e)+a(e)
<

ale)d ale)

Hence ((k-l)B(e)-M (e)+8(e)
Mg () + 0

ale)-ole)=-(k-1)R(e)<h8(e).
ale)

As we indicated above, the consiraint on the iength
of the gueue must also contribute a component to the
relation we wish To develop. Disregarding criterion (1)
now, we ask: What is the minimum number of Times v. must
have fired (thereby removing words from the queue) before

v. may occur for the kTh time (where e=(v.,v.]

[ RN
namber is characterized in the following propesition,

o

A}
s

. This

Proposition 2.2 For each integer k, v mustT have occurred
J
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at least n times before v, may occur the kTh time, where

e=(v;,v;), B(e)#0, and

J
ka(e)+MO(e)-€(e)
Ble)

n =

Proof:

v. may occur the kfh time only if M(e)+ta(e) < e(e),

which may be written [Mo(e)+(k-1)u(e)—nB(e)]+a(e) < ele).
But this can be true if and only if Mo(e)+ka(e)-e(e)3n8(e).

ka(e)+Mo(e)—€(e)
Hence n 2 , and letting n be the least

g(e)

integer such that this is ftrue, we see tThat

(ko(e)+M (e)-g(e)
n = 0
B(e)

B
Using these two propositions, we may define a relation
giving the constraints imposed on the order of operation
occurrence. Given a BCG, we define tThe constraint relation

Kk for that BCG,

Definition 2.6 The constraint rclation, k¥, of a BCG with

a(e)#0#B(e) for all eeE is a relation K ¢ VXVXZxZxZ

defined as follows: Ffor every e=(vi,vj) in £, for each

intfeger k, (vi,vi,k,n,l)ex if and only if
ko(el+it (ej=-e(e)
n = | 0

and & =
[ 3 (e) | ale) |

(k-1)8(e)-MO(e)+9(e)]

1€ Cv.,v.,k,n,%)ex, we know by Propositions 2.1 and 2,2
‘ J

that the nTh occurrence of VJ must precede the kfh Time
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Vi occurs and the th occurrence of Vi must precede the
kTh occurrence of Vj' We shall use this constraint rela-
tion fo define an infinite marked graph, called the
behavior graph of the BCG, representing the constraints

on the order of event occurrences expliciftly.

I+ is interesting to note theat although the relation
Kk is an infinite set, it may be finitely represented. To

see this, we make the following observation.

Proposition 2.3 Let Wy = LCM (ale),B(e)). Then if

(vi,vj,k,n,l)eK, we have for all integers m,

wea(e) w B(e)
(vi,vj,k+mwe,n+m = ,2tm |2 Yek.

Ble) ale)

Proof:

Let k'=k+mw ., Then (v-.vj.k';n';l‘)eK where

e re

((k+mwe)a(e)+Mo(e)—e(e)1 ) (ka(e)+MO(e)—a(e)W;mwea(e)
| [
| | |

n' = | =
B(e) | B(e) B(e)
| [weBle)]
= n+m
L ale)
and
+mw_ - -M (e)+ 1
. (ktmw _-1)8(e) -1 Ce) §(e)] _ £+m[w98(e)l
ale) \ L ale)
d
Le+t k' be any integer. We may zalways write k'=gw +r

where g is some infeger and O < r < W Hence

Proposition 2.3 tells us thet each (v,,v.,ki,n" L") in «x
J
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may be writfen in terms of

weole) weB(e)
(vi,v.,k'—qwe,n'—q —_,%"-g
J B(e) ofe)

) € K

with 0 < k'—qwe < W A finite subset of Kk may therefore

be used to construct the entire relation using tThis rule.

2.4 Behavior Graphs

Using the constraint relation, we define an infinite
marked graph which explicitly describes the control flow
of the computation graph with bounds (assuming, of course,
that a(e)#0#B(e)). It is then demonstrated that this

infinite graph is indeed a2 valid representation for the

computation graph.

Definition 2.7 The behavior graph B of a BCG with

a(e)#0#B(e) for each edge eeckE is a marked graph B=(V,E,M)

defined as follows: [f G = (V,E,Mo,a,s,e,e),
. - n
iy vo= {v | v ev and nez}
| !
- = -1 k=1 -1 k-1 L=
i) B 1) (vT o ,v) ) and v ,v. ) are in E
i ] i

whenever (vi,vj,k,n,l)sK, and
2) (v?,v?+])eg'for all integers n, each v,
in V.
i) M ois given as follows:
M(e)=1 if e=(v?,v?) in E with p<0 and qz0
or p=0 and g<8, and

4{e)=0 otherwise.
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We notice that E is defined as it is in order to
index the firings of a vertex from zero rather than from
one. |1t is also evident that v? for ai! negative p is
dead, as there is a path containing no markers directed
into each vertex having a negative superscripf. Figure 2.3

gives a portion of the behavior graph for the BCG of

Example 1.

We now establish that every firing sequence of a BCG
G (with appropriate superscripts added) is a firing se-
quence for its behavior graph B. Conversely, it is shown
that every firing sequence for B (with superscrip™s
deleted) is a firing sequence for G, This is done in the

following two propositions.

Proposition 2.4 |f x is a firing sequence for 2 BCG G

14

then we can find a firing sequence x* for its behavior

graph B which is of the foliowing form: 7 X = VieeoV

2 .
then x* = v?...v m, where & is the number of times V.
I

m

m
has appeared in ;i (denoted by #(vil;})) and ;I 2V, 4.,V

1 -1

—

the first i-1 vertices in the firing sequence x,
—Proof:

The proof wil!l be by induction on the length of X .
Since the empty string, A, is a firing sequence for bofh
B and G, we suppose that Ix1=1 and let ;Ev;. Then v, is

firable in G under M_, so that for all eel(v ), we have
v i

Mo(e) 2 B(e) and for all e'eO(vi) we have Mo(e')+a(e‘)S€(e').
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We show now that v? is a firing sequence for B,

1) Consider e=(v,vi) in I(VI)' Then (v,v;,1,n,%)ex,

-M.(e)+6(e)]
where § = |—>— and (v2—1,v?)e§.

But since v.
ale) l

is a firing sequence for G, Mo(e) > 6(e), so £<0 and
2-1<0, Each edge in I(Vi) has this property, so each
edge in E'arising from K in this way must contain a
marker under M,
2) Consider (vi,v)=e'60(vi). Then (vi,v,1,n,2)eK,
a(e')+Mo(e')-€(e') 1 _

where n = . Then (v, v0)eE.
Blel) !

Since v is a firing sequence for G, we know that

Mo(e')+a(e') < g(e'), hence n<0 and n-1<0. Each edge
e'eO(vi) has this property, so each edge in E arising
from k in this way must also contain a marker under M

3) There is only one other way in which an edge in
E direcfec into v? can arise. That is the edge (v?l,v?)
which clearly contains a marker under ",

Hence 1 ¥ v is a firing sequence for G, all edges in
I(v?) contain markers under M and v? is a firing sequence

i
for B,

We now assume that if Ixl=m and x is a firing sequence
for G, then there is 2 firing sequence x* for B of length
ix| and of *the appropriate form. Let y = xvibe a firing

sequence for G. We show that y* = x*v[, p=#iv. ix), Is 3
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firing sequence for B, By the Induction hypothesis, atl

that needs to be shown is that v? is firable under

MY = u(M,x*) whenever y XV, is a firing sequence for G.

As noted before, each edge e=(vq,v?)eI(v$) in E can
only arise in one of the foiicwing three ways:
1) g=%-1 and (v,vi,p+1,n,2)eK, 2) g=n-1 and (vi,v,p+1,n',2')

is in Kk, or 3) g=p-1 and e=(v?-1,v?) in E. We consider

each of these possibilities in turn.

1) If g=2-1 and (v,vi,p+1,n,l)eK, we show that (vz-lv?)
I
-3
contains a marker under M', Now, since p20, (v ,v?) may
l

contain a marker if and only if either vp’-1 has fired or

2-1<0, 1f v ¢ X and 7 = XV, is a firing sequence for G,

then Mo(e) 2 B8(e) for e=(v,vi) and 2-1<0 as shown above,

[f v e x and 7 = ;v: is a firing sequence gor G, but
-1
v has not fired, then in G, Mo(e)+2"a(e)—p8(e) > 8(e)

where 24"<% since #(VII;)=p. But (v,vi,p+l,n,2)eK, so &

must be The least integer such fhat Mo(e)+2a(e)-p8(e)26(e),

and if v!z"1 has not fired, v, may nct occur the p+1SJr

time, contradicting the assumption that ?-= ;Vi is 2
firing sequence for G with #(Vi!;) = n. dence either v?-1
has fired or 2-1<C and (vq,v?) must contain a marker
under ' if (v,vi,p+1,n,2)eK and q=2-1.

2) 1If gq=n-1 and (vi,v,p+1,n‘,l')eK, we show that
(vn:-i,v?) contains a marker under M'. Again, M'(e)>0
if and only if V"' ! has fired or n'-1<0 (since p20), If

v ¢ X and 7 = xv, is a firing sequence for G, then for
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e=(vi,v), Mo(e)+a(e) < gfle)., As shown in (2) above,
nt=1<0. 1f v ex but v" "' has not fired, then in G,
[Mo(e)+pa(e)-n"8(e)]+a(e) < e(e). Since v, may occur
the p+1ST time and v! "' has not fired, n" < n'. But
(vi.,v,p+1,n",4")ex implies fThat n' is the least integer
such that [Mg(e)+pale)-n'Ble)i+ale) < ele), so if Yl
has not fired, 7 = ;Vi may not be a firing sequence for
G, forming a contradiction. Hence either v”"1 has fired
or n'-1<0, and (vq,v?) must contain a marker unders
(vi,v,p+1,n',2')eK and g=n'-1,

3) The only other way in which an edge in I(v?) may

arise is (v?-],v?) in E. But since x* is a firing sequence

for B and 7 =‘->_<.vi is a firing sequence for G, if p>0, then
v?—lex*, so v?—I must have fired and (v?,v?), q=p-1,
contains a marker under M', |f p=0, p-1<0 and again

(v?,v?) contains a marker under M' when g=p-1.

Every edge In I(v?) is of one of the zbove forms.
Hence if y = xv. i3 2 firing sequence for G, lyl=m+1, then
P . - — -
v’ is firable under u(M,x*) and y¥* = x*vP where p=#(v_ Ix)
i i

is a firing sequence for B.
0

Proposition 2,4 tells us that for every firing se-
quence x of G, we may find a corresponding firing sequence
x* for B which is the same as x when the superscripts

are removed. We now show the converse,
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Proposition 2.5 Given a BCG G and ifs behavior graph B,

for each firing sequence x* of B, x (=x¥* with superscripts
removed) is a firing sequence for G.

Proof:

The proof will be by induction on the length of x*,
As before, since A, thc empty sequence, is a firing
sequence for both B and G, we suppose that x* is of length

one and let x*=v?. For every edge e=(v,vi) in I(VI)’ we

have (v,v;,1,n,2)ex, where & = f[ece)-Mo(e)]/a(e)]. Since
0

vy is a firing sequence for B, 2-1<0, so that £<0 and we
have Mo(e) > g8(e). Similarly, for every edge e=(vi,v) in
0Cv;) we have {vz,v,l,n',ﬂ')eK, where the integer n' is
[ale)+M,(e)-ele)

n' = . Again, since vq is a firing se-
B(e) '

quence for B, n'-1<0, hence n'<0 and Mo(e)+a(e) < ele).
New, since for all eeI(vi), Mo(e) > f(e) and for all eeO(vI),

Mo(e)+a(e) < ele), x = v, is a firing sequence for G.

Now suppose that if ix¥i=m, x* a firing sequence for
B, Then X {(of +he required form) is a firing sequence for
G. Let y*=x*v? be a firfng sequence for B of length m+i.
We recall fthat y* can be a firing sequence for B only if
vP s

is firable under M"=u(M,x*), and that x is a firing

sequence for G since x¥ is 2z firing sequence of length

=
(e}
b3
-
—+
(o]
-
4]
')
O
2
®
Q.
[(e]
[
o
I
~N
<
-
<
m
4
—
<
-
.
<
-
<

4 'R}
1

.2 PT

ny ..
sN,xiek

and (v2 ,v?) contains a marker in B. 3o either 2-1<0,
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implying that véx and Mo(e)-pB(e) > 6(e), or 2-120 and v
has occurred % times in x. Since (v?—1,v?) also contains
a marker, v, has occurred p times in X. But then

1
M= (MO’;) is such that M'(e) = M _(e)+La(e)-pB(e), and

0

since (v,vi,p+1,n,2)eK we know That Mo(e)+2a(e)-p8(e)26(e).
In either case, we have M'(e) 2 8(e) for each eeI(vi).

Secondly, for each edge e=(v.,v) ¢ 0Cv.), we have
(v.,v,p*l,n',2")ex and (vn"1,v?) contains a marker under
M"™_, Again, there are fwo cases fo be considered. |[f
n'-1<0, then véx and [Mo(e)+pa(e)]+a(e) < g(e). On the
other hand, if n'-120, then v has occurred n' times in
X . Again, v, has occurred p times in x, so tThat now
M'(e) = Mo(e)+pa(e)—n'8(e). But since (vi,v,p+1,n',2')eK
we know that M'(e)+ale) < e(e). In either case, we have
M1 (e)+ale) < ele) for atll eeO(vi),

Finally, we conciude that since X is a firing se-
quence for G by induction hypothesis and Vi is firabie

—

under M', y = XV, is a firing sequence for G.

[

ln Propositions 2.4 end 2.5, we have shown tThat a
BCG G and its behavior graph B are equivalent in the
sense that their firing sequences are "the same"., Hence
the behavior graph is a valid representation for the

behavior of the BCG from which it was constructed.



[l - FINITE REPRESENTATION - BOUNDED CASE

3.1 Introduction

Given a computation graph with bounds and its be-
havior graph, we wish to determine whether or not there
is a finite marked graph having a set of firing sequences

equivalent to that of the BCG,

In deciding this question, it is helpful to defer-
mine when ezch edge of the behavior graph may be written
by incrementing or decrementing the superscripts of the
endpoints of some edge in a subgraph of the behavior
graph by muitipies of fix

...... i At
i

~ A de A~ ~ £
tAT U Qi Uil O n DU DT )

~ odrnocg
s G\va-&
in the behavior graph B which generates B in the sense
that every edge may be wriffen in this way is called &

generating set for B,

First, necessary and sufficient condifions for The
existence of a generating set for the behavior graph are
given. Then we show That when 2 BCG is sirongly connected
and its behavior graph has no generating set, there is
aiways a finite marked graph representation for the BCG.
Extending the analysis to BCG's which are not strongly

connected, it is shown that if there is no generating set
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for its behavior graph, a finite marked graph representing
a BCG G always exists, This is done by considering

interconnections of strongly connected components.

Finally, the case in which there are an infinite
number of live vertices in the behavior graph is con-
sidered. In this case, it is seen that the behavior
graph must have a generating set. Conditions are then
given for the existence of & finite marked graph represent-
ing a BCG when its behavior graph has an infinite number

of live vertices.

3.2 Generating Sets

A generating set for the behavior graph B of a BCG

G is a subset of E in terms of which the entire set E may
be expressed, |In particutar, each edge in E'may be written
by incrementing or decrementing superscripfs of endpoints

cf some edge in a generating sel by inTeger muitipies of

fixed amounts.

in This section, the definitions concerning generating
sets are formally given, Then necessary and sufficient
conditions for the existence of a generating set for the

behavior graph of a BCG G are given.

We assume, wiThout loss of generality, that

y = {Vl""’VL}’ where [V]| = L, and let N = {1,2,...1.
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Definition 3.1 Given a BCG G = (V,E,Mo,a,B,e,e) and its

behavior graph B = (V,E,M), let m* be an L-tuple of pos-

itive integers, one for each vertex of V, and let m? denote
-th

the | component of m¥*, Then

E/m* =y {(v?,vf)eg~| O<s<m¥}.
vieV b ‘

The set generated by E/m* is then given by:

— * —_—
<E/m*> = {(v?+rmi,v§+rm§) [ (v?,v?) e E/m* and reZ}.
Given the notation above, we may now define formally

the concept of a generating set for the behavior graph.

Definition 3.2 E/m* is a generating set for B if

<E/m*> = E.

The following femma is used in deriving fthe necessary
and sufficient condiTions for the existence of a2 generating
set for the behavior graph of a given BCG. Henceforth,
it is always assumed uniess stated otherwise thet

ale) #0#B(e) for each edge eek,

L —
Lemma 3,1 Let m*¥<N , reZ, and (v?,vz)eE with s=s'+rm?

and t=ft'+rm*, If m¥ = mj[B(e)/a(e)] when e=(vi,vj)eE
o

and m} = m?[B(e‘)/a(e')] when e'=(vj,v_)eE then
1

s' Tt
{v> ,v. Jek,
i J
Proof
S +, = . .
(v.,vj)sE, so we know that either
i
1y {v_,v.,T+1,n,s+1)ex and (v, ,v.iek or

J it



2) (v,,v,,t+1,s+1,8)ek and e'=(v.,v.)ell or
J J7 !
3) i=] and s+1=%,

{f case (1) applies, then

s+1 =

= s'+1+rm?.

((++1)-1)8(e)—M0(e)+e(e)
ale)

Since T=+‘+rm§ and m? = [a(e)/B(e)]m?, we may write:

[((t'+1)~1)8(e)=M (e)+6(e)+rm¥*p(e)
— 0 J
s+l =
ale)
'((+'+1)-1)s(e)—Mo(e>+e<e)
= + rm¥*
ale) :
Hence

-

s'+1 =

((T'+1)—T)B(e)-MO(e)+e(e)w

ale)

1

1 -—
and (v? ,VE JeE, as (vi,vj,+'+1,n',s'+1)eK.

| £

~
[ ~

Q)]

se (2) applies, then

r_(1"!-’.)oa(e')*-!\ﬁ.o(e')-e(e')-
s+1 = = s'ii+rm*,
gle') !

|

Since t=t!'+rm¥* and m¥*

| [a(e’)/B(e’)]mj, we have:

'<+'+1>a<e'>+M0<e'>-a<e')+rm%a<e')
s+1 = J
B(e")
—(T‘+1)a(e')+M0(e')—e(e')
= + rm¥*
B(e') :
aence

s'+l

r(f'+1)a(e')+MO(e')—€(e')}
=

! 8(e")
N R
and (v? ,vj JeE, since (v;,vi,f'+1,s'+1,2')eK.
)

31
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Finally, if case (3) applies, we may write
s=s'+rm¥ and T=T'+rm§, so that we have the following:
st1 = (s'+1)+rm¥ = tl+rm? =t

——

But this then says that s'+1 = +', and (v?',vg')eE.

The following theorem gives necessary and sufficient
conditions for the existence of a generating set for the

behavior graph of a given computation graph.

Theorem 3.1 Given a BCG G = (V,E,M,,a,B,8,€) with |v]=L
and behavior graph B = (V,E,M), let m*eNE and consider
E/m*. E/m* is a generating set for B if and only if the
vector m* has the property that m? = [B(e)/a(e)]mj for
each edge e=(vi,vj)eE and m?>0 for all i=1,2,...,L.
Proof:

We first show that <E/m*>=E 1f m¥ = [B(e)/ale)Inm?

for each edge e=(v_,vj)eE and mT>O for aill i=1,...,L.
i

A) <E/m¥*> c E.
s+r‘m’.‘e t+rm*

Let e=(v] gy Jj) e <E/m¥*>, Then by definition

we know that (v?,vg) ¢ E. But this can be so if and only
if one of the following i3 true:

11 (vi,vJ,T+T,n,s+1) € K

Z) (Vi’vi’T+I’S+1’2) € K

-

3) i =] and s+l = ft.

it case (1) appiies, then we have
Cl++1)-1)8(e)-M (e)+6(e}]
s+1 = 0 . But then
ale)
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(vi,vJ,(T+1)+rm§,n',s') is in the relation k, where

[((t+1)+rm¥=1)B(e)-M (e)+6(e)1
g! = J 0

ale)

-((T+1)-1)B(e)—MO(e)+e(e)+rm§B(e)
ale)

ale)

T((t+1)-1)B(e)=M_(e)+6(e)
= 0 + rm?

(s+1)+rm?

% —
Hence it follows that in this case, (v?+rmi,v§+rm§)eE.

if case (2) applies, then we have

(T+1)a(e)+Mo(e)—e(e)
s+1 = , and (v _,v.,t+l+rm*,s" ")
B(e) g J

is in the constraint relation k, where

B + ¥ + -
L ((+ 1)+rmJa(e) Mo(e) e(e)}

gle) l

1]
e

(T+l)a(e)+MO(e)—s(e)+rm¥~(e)}
2(e) .

-

r(T+1)a(e)+MO(e)—€(e)

+ rm?

3(e)

(S+1)+rm?

+rm*
(vErmy
i

* -
And in this case also, ,vT+rmj)eE.

Finally, if case (3) applies, then

T+rmj = (s+1)+rm¥* = (s+rm?)+1, and here, too, we see fhat
+ * + * —_
SARLERAL VY-

i J

|+ has therefore been shown that <E/m*> ¢ E.



Let e=(v?,v}) be an edge in E. By Lemma 3.1. it
suffices to show that s=s‘+rm? and t=1'+rm* for some
integer s' such that OSS'<m?, for then (v?',vz')eEVm*
and we have (v?,v?)e<§7m*>.

3) is in E, one of the foilowing

Now, since (v?,v
must be true: 1) (vi,vj,f+1,n,s+15 € K
2) (vj,vi,f+1,s+1, ) € K
3) i = j and s+1 = t,
| f case (1) applies, we can always write s+l as

s'+1+rm? for some integer s' such that O<s'<m¥. Then

we may write:

‘<(++1)-1)3(e)—Mo<e)+e(ef
s+l = = s'+1+rm¥
ale) !
Then [((++1)=1)R(e)=M (e)+6(e)] Frm¥R(e)]
S"‘-'T = O - __J__——
ale) ale)

T((t-rm*+1)-1)B(e) =M (e)+e(e)}
J 0

ale) |

-((T‘+l)—1)B(e)-MO(e)+6(e)
ale)

where T=t'+rm¥*¥, Soc in case (1) we are finished.
J
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f case (2) applies, we again write s+1 = s'+1+rm¥

Lo
e

some integer s' with OSs'<mf. Then we see that:
{(T+l)a(e)+Mo(e)-e(e)}

i gle) i

s+1 =

= s'+1+rm¥
|

(SRR
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Then [((t+1)ale)+M (e)-ele) (rm*a(e)
s'+] = 0 - | -
Be) | 8(e)
i f—rm§+1)a(e)+Mo(e)-a(e)-
B(e)

—(T'+1)a(e)+Mo(e)-e(e)
B(el

where T=T'+rm§. Hence in case (2) we are finished.

Finally, if case (3) applies, we may write s=s'+rm?
for some integer s' with OSS'<m?. But then we have
=s+] = (s'+1)+rm? = T'+rm?.
Now [T has been shown that E ¢ <E/m*> and <E/m*> ¢ E.

Hence one direction of the theorem is established.

The proof of the converse is by contradiction. We
suppose that E/m* is a generating set for B but that for
some edge e=(vi,vj) in E, we have m? # [B(e)/ale)Im*, Let

,VT) be in the generating set E/m¥*, Then we know that
+rm¥  tErm¥. . = . -

(v’ i,V j) is in E for all integers r. Then by
!

v
definition of B, we have (vi,vj,++1+rmj,n,s+1+rm?) € K

for all integers r. Thus we may write:

[ ((t+1)+rm*)=1]1R(e) =M (e)+6(e)
(s+1)+rm? J 0

ale) |

(%)

‘<(++1)-1)s<e>-MO(e>+e(e)+rm§e<e>
ale)

. S Ty o s .
Now, since (VI’VT) is in the generating set, we know

[}
o

that it is also in E, and (vi,v,,++1,n',s+1)eK, 50
J
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[((T+l)-1)B(e)—MO(e)+e(e)1
s+1 = (*%)
ale)
Now, using (*) and (**), we see that
I'((TH)-l )B(e)-MO(e)+6(e)+rm3‘B(e)_‘
ale) (+)
i ‘Y(TH)—])B(e)-MO(e)+e(e)+rm?a(e)
i ale) 1
I+ is clear that (+) holds for all integers r. Since we
have assumed that m? # [B(e)/a(e)]m?, we may write
m? = [ij(e)+q]/a(e) for some nonzero integer g. Thus
rm?a(e) = r[ij(e)+q]. I+ is clear that for sufficiently

large e Iroq[ > o(e). Clearly, () cannot hold for

rzor and the theorem is established.

0}
Given this theorem, we may state an immediate cor-
ollary giving the necessary and sufficient condifions
which we desire. These condiftions are couched in fTerms
of the existence of a nontrivial infteger solution fo a

given sef of equations.

Corollary 3.1 Given a2 BCG G with a behavior graph B,

B has a generating set if and only if there is a non-
trivial integer scolution to the sef of equations

m? = [S(e)/a(e)]mj for a2l e=(vi,v,) in E.
J

Referring to the BCG of Exempie 1, it is cleer thet

its behavicr graph has a generating set., One such set



where m¥* = (m?,mg,mg,mZ) = (2,2,1,2)

GRAPHICAL REPRESENTATION FOR
A GENERATING SET OF THE BEHAVICR GRAPH

0F FIGURE 2.3

FIGURE 3.1
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is shown in Figure 3.1.

Two comments should be made concerning these
results, First, they do not depend in any way on
parameters other fthan ¢ < ~nd B(e). This is true
because all of e other parameters enter into the con-
straint relation only as constants throughout the
relation. Secondly, the theorem is not restricted to
those BCG's which have particularly nice structure, The
sole restriction is that a(e)#0#8(e), which was made much

eartier in defining the behavior graph in the first place.

The following two propositions give alternate
characterizations of necessary condifions for the exist-
ence of a generating set for the behavior graph of a BCG.
They are significant because they involve fTesting only
the parameters o and B in the graph and do not require
reference to the behavior graph itself. That these
conditions are not sufficient is shown by the example

in Figure 3.2,

Definition 3.3 We shal! denote the product

Ble. ) ... Ble )
1 n

along a path m = e_...e by T(m,.

ale.) ... ale ) ! n
1 n

Propositicn 3.1 Given a BCG G, for its behavior graph B

to have a generating set, it ic necessary that for every

pair of paths m=e, ... and v‘=e{...eé from v, to Vj in



The following family of equations is inconsistent:

* = ¥ = * = *
m3 m3 \1/2)m3 2m4
mE = mg = (1/4)m§ = (2/3)mz

The behavior graph has no generating set

and the computation dies.

39
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G we have T(m) = T(m'}).

Proof:

The resuit is immediate, for suppose that E/m* is s

generating set for B. Then it is clear that by successive
substitution, m? = mjf(ﬂ) and m? = mjf(n'). Then since
m¥#0#m¥*, T(m) = I'(m').

| J 0

Proposition 3.2 Given a BCG G, for its behavior graph B

to have a generating set, it is necessary that for every
cycle T=€ .. .8 in G, I'(w) =1,
Proof:

Again, the result is immediate. Suppose that E/m*
is a generating set for 8. Then we may wrife m* = F(ﬂ)m?

for each cycle m, since m¥* # 0,
i

a

3.3 Finite Representaticn - When B Has No Generating Set
B S

We now consider the problem of finding a finite
marked graph representation for a given behavior graph.
Our approach will involve first considering the strongly
connected case, and determining a solution for that case
when B has no generating set. We then extend the results
obtzcined to BCG's which are not strongly connected whose
behavior graphs have no generating set. The analysis is
completed in the next section with an analysis of the case

in which the BCG (strongly connected or not ) has 2

<
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generating set.

fn the case that the graph of a BCG is strongly
connected, the analysis is relatively simple., We begin
by stating necessary and sufficient conditions for a
strongly connected BCG to have a behavior graph with a

generating set, but first we need a lemma.

Lemma 3.2 In a strongly connected BCG G, if T{m} =1

about every cyclie 7w, then if T and 7w, are paths from

2

v, To v,  in G, then I'(m,) = I'(w,).
i J 1 2

Proof:

Let ™ and m, be paths from v to v_ in G. Since
J
the BCG is strongly connected, there is some path 7

from v, To v, in G. The paths WTﬂ and ﬂzn are cycles, so
J i

oD

T(ﬂl)T(ﬂ) =1 = F(WZ)T(w) and the result folliows

immediately. a

T~ Lol mes Vo -~ o o} - HE NP - - T -
tne 7O 0WIng Proposivion gives an im

......
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-+
[}
3
-+
q
[7)
C

concerning the existence of a generating set for The

behavior graph of a strongly connected BCG.

Proposition 3.3 Given a strongly connected 8CG G with

behavior graph B, B has a generating set if and only if
for every cycle m in G, T'(w) = 1,
Proof:

Proposition 3.2 gives necessity. T therefore

suffices To construct a vector m*¥ satisfying *he properties
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of Theorem 3.1,
We number the L vertlices in V by VI’ cees Vi and

for each vertex v consider the edges e, =(v )

. o=lv., v,
bydik ! Jik
in O(Vi)' We may write the equations of Corollary 3.1

in the following form:

Ble, . ) B(e1 .
(1) m¥ = Lt m* = ., = ———2dlk %
(e, . ) 1 ( o) Tk
@1, 011 e, i1k
B(e,. .
(2) m¥ = ___Eligl_ m* = .
2 ale, . ) J21
»J21
s(eL . )
(L) m¥ = ____—2dl1 m* = ..,
L ate, . ) L1
L’JLI

where the mﬁ are as vyet unspecified.
We shall construct the vector m* by first assigning

g vaiue to mT then ietting the m§1 be specified by the

equations in (1) above. Assume (without ioss of generality)

that for i>t, m? appears in (k) for some k<i., Then the

indeterminates m? _in (n) for 2<n<L may be specified, in
v

order of ascending n, by means of the value of m* and the

R

equations (n). By Lemma 3.2, 1f m§ . appears in (L) for
n

2<n, then the value assigned to m?nk in step (n) is the
same as that assigned in step 1.
All that need be done, then, is show that there is

some choice for m? which produces a positive integer
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vector m¥*¥, But consider m? =TT a(e)B(e). This choice
eekt
for mT clearly produces an integer vector.

We shall postpone analysis of the finite represen-
tation problem for behavior graphs of BCG's having
generating sets until later. The following two resulfs
reveal that if a BCG is strongly connected and its
behavior graph B has no generating set, then deadlock is
eventually present. Hence there is only a finite portion
of the behavior graph which is live, and fthere is clearly
a finite marked graph representation for the behavior

graph in these cases.

Proposition 3.4 Given a strongly cennected BCG G with

some cycle T=e, .8 having T(m) < 1, there are a finite

number of live vertices in the behavicr grapgh B.
Proof:

We shall show that there is some cycle in B whose
superscripts are al! nonnegetive, fthereby showing thet

there are in B vertices which can never be fired., Then
since G is strongly connected, we may conclude fthat
pitr . :
vl is dead in B for some pizo, all rz0, for each
i
i =1,...,L, completing the proof.

Consider the cycle mw = e, ... e in G. Without [oss

0f generaiity, we iet e.=(v,,v ),... ={v ,v,). Then
= Y. l 1’ ’ ? m m’ 1

2
PR ch in*teger k WS ve (. N k r\k Ok\ v (Nt ina
O eacdn |u|e\\.’en K, W& nave \vi,v.,\,u. & €K, NeTing



that nK

n to the kN power or & to the k-{hh power.) So in
particular,
K 1.
(v1,v2,k,n ,2?) W
(v2,v3,n¥,n§,2§)
. \ are all in k
. for each integer
k k .k
(V.’Vl’nm-I’nm’zm) )
K- - K. -
Thus the edges: (v?m ],v”m-l 1), ey (vgl 1,v$ )
are all in E.
k
n =1 k=1
We therefore have a path from v1m to v, in B
for each integer k. [If, for any k, we have k < n;, there
is a path from Vl— to v?%'1 as well, and a2 cycle exists
in B, Notice that for each integer Kk,
r =Y +M - +| - )
KL kale )+M, (e ) e(e])1 . kale )+ (e )-ele )
: >
B(e‘i) i B(e.[)
nkn/(n Y4+M (e —-c(a ! km( +M ( -
nk _mpeteytigle ) v‘vz) g n1“'92) Ho~ez) € 92)
2 3te,) 2Ce,)
K k
, n .ale Y+M (e )=-el(e ) n ofle Y+M_ (e )-e(e )
LK m- m 0 m m > m-=1 m 0" ™m m
m .
| Ble ) B(em)
And, by successive substitution, lefting Ri = Mo(ei)—a(e
i
1 a(ez)...a(em) !
n =z kK + R, + +.. ¥R .
r(m Ble,i. . .Ble ) " gte )
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and L° are integers whose value depends on k, not

k

7






