INFORMATION TO USERS

Thls materlal was prodwed from a mlcrofilm copy of the original doeument While s
the most advanced technological means to photograph and reproduee this document

have been used the quallty is heavily dependent upon the quality of the ongmal _
' submitted.

The fol!owing explanation of techniques is provided ‘to help you understand
markings or patterns which may appear on this reproduction.

1. The sign or “target" for pages apparently lacking from the document
photographed is “’Missing Page(s)". If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages.
This may have necessitated cutting thru an |mage and duplwatmg ad]aeent o
‘pages to insure you complete contlnurty

- 2.When an- image on the fllm is obllterated with a large round black mark it
is an indication that the photographer suspected that the copy may have
moved during exposure and thus cause a blurred |mage You will find a
good image of the page m the adjaeent frame

3. When a map, drawmg or chart, etc., was part of the material bemg- :
photographed the photographer followed a definite method in
“sectioning” the material. It is customary to begin photoing at the upper-

- left hand corner of a large sheet and to continue photoing from left to
right in equal sections with a small overlap. If ‘necessary, sectioning is
continued again — beglnmng below the first row and continuing on until

' complete

4. The majorliy of users indicate that the textual content is of greatest value,
however, a somewhat higher quality reproductlon could be made from
“photographs” if essential to the undersmndmg of the dissertation. Silver
' pnnts of° "photographs" may be ordered at addltlonal charge by writing -
- the Order Department, giving the catalog number, tntle, author and
specific pages you w:sh reprodueed :

5 PLEASE NOTE' Some pages may have mdlstmct prmt Fllmed as -
meenred. : et : ,

Xerox Umverslty Mlcromms SR
300 North Zeeb Road - - : R)
Ann Arbor, Michigan 48106 '

74-21,252 |

- BOHIMANN, Rodney John, 1948-
LANGUAGE PRE~PROCESSING AT A REMOTE TERMINAL.

Rice University, Ph.D., 1974 v i
Engineering, electrical _=

E University Microfilms, A XEROX Company , Ann Arbor, Michigan §

TV i i & ot St g o i e | e ... e . A Bt i e o oesmny s e

THiS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED,

RICE UNIVERSITY

Language Pre-processing at a Remote Terminal

by
Rodney John Bohlmann

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy
Thesis Director's signature:

s

Houston, Texas

L ~

August, 1973

This work is dedicated to the glory of God.

The author wishes to take this opportunity to
acknowledge the many persons who have affected my
graduate career and by so doing have moldad a small
portion of my life.

| wish to express my sincere appreciation for the
excellent counsel and constant encouragement afforded me
by my thesis director Dr. Minnick. |In addition, | thank
the other members of my research committee, Dr. Rusk and
Dr. Kennedy.

| also take this opportunity to thank those students
who helped construct the terminal processor: Randy Neff,
Newell Starks and Ken Tom. Without the technical help
of such persons a project of this magnitude could not have
been undertaken.

The typing of the thesis was so aptly performed by
Mrs. Ray Lauterbach that thank-you's are not enough.

1 also wish to acknowledge my wife and children whose
confidence in me never failed even in the hardest times.
Without their willingness to continue | might have long
since lost sight of the light at the end of the tunnel.

My sincere thank-you to all these people and also

to anyone whom | may have unintentionally overlooked.

Vi

Table of Contents

Background

Separation of Interpreter Tasks
An APL Terminal Processor

Details of the Terminal Processor
Performance Analysis

Conclusions and Extensions

Bibliography

Appendices

Preliminary User Manual for $-4200(4300)

APL\360 Simulator for LPN

APL Terminal Processor Logic Diagrams

I. Background

In the early years of computers, machines were pro-
grammed in thelr machine languages. Such machines as
MARK I, ENIAC and EDVAC required much time and tedious
effort to program. As time progressed, tools progressed
and today's machines are programmed in FORTRAN and ALGOL.
The development of high-level languages such as these
came about by shifting the tedious tasks from the pro=
grammer to the computer. This shifting allowed program-
mers to proceed to better languages, but little progress
has been made to expedite the process in the computer.

Mnemonic operation codes, or opcodes, were intro-
duced early as a programming aid. The Harvard Mark IV
computer used mnemonic opcodes in conjunction with its
"coding box"[MI73]. Following this the users of Whirl-
wind at MIT in 1952 and also Rochester in 1953 developed

techniques using symbolic addresses[SA69]. This latter

work coupled with the mnemonic opcodes resulted in the
class of languages ;abeled assembly language. An assembly
language allows the programmer to write in a symbolic form
and forget about the actual addresses involved. Memory
locations for each variable and instruction word are as-
signed by a program called the assembler. The use of
assemblers represents the first step in transferring the

work of programming from the user to the computer.

As assembly language usage grew, programmers became
increasingly aware that certain programs were being written
over and over again. In order to alleviate this situation,
systems were developed which allowed programs to link to
independently assembled code segments. One early system
was the "compiling program" reported by Livingston[LI54] in
1954. It should be noted that what he has described would
be called a linker in today's terminology. The compiling
program took care of modifying specified addresses and
positioning code in such a way that one section of code
could communicate with other code sections. The effect was
again to move a portion of the work load from the human to
the machine. This process of moving the work load is pointed
out expliecitly by Stanley Gill in the proceedlngs of the
Symposlium on Automatic Programming for Digital Computers in
his comments concerning program preparation[GI5S4]:

"Automatic programming techniques are designed

to reduce the human phase at the expense of the

automatic phasej..."

Prior to Livingston's report, higher level languages
were under development, Short Code and Speedcoding were
done in 1952 and 1953 respectively.’ An even better system
was developed at MIT by Laning and Zierler in 1952-53 for
use on the Whirlwind computer. While Short Code and Speed-
coding allowed for easier coding, it was the system of
Laning and Zierler which made programming more natural.
Their system along with those of Remington Rand and Boeing

stand as the forerunners of high level programming languages.

Programs written in the high level languages were either
interpreted or compiled by another program running on the
computer in use. This pushed even more load onto the
processor.

From the brief history traced above it can be seen
that with each step toward better programming tools more
load was placed on the computer. This, after all, was the
intent of the digital computer: it should be used in every
way possible in order to help solve the engineering and
scilentific problems which were too complex or too large to
do by hand calculations. However, as the load shifted, the
computer started spending more of its time getting ready to
solve the problem. Today a computer spends a large percen-
tage of its time doing tasks which are only secondary to
the actual solution of the problems presented. Throughout
this load builld up, the architecture of the computing in-
strument stayed rather fixed. Thus in order to do the tasks
of compiling and interpreting a language the programmer had
to set up large programs composed of simple machine instruc-
tions. Such programs enabled the machine to do the things it
should be capable of in order to use the algorithmic lan-
guages involvad. It was 1961 before a paper appeared by J. P,
Anderson[AN61] of Burroughs Corboration which described rad-
ical changes in hardware in order to expedite the execution
of algorithmic languages. Since then several systems have
been aeveloped which aid in execution or directly execute a
high level language. These systems have varied widely from

the inclusion of string processing instructions in general

purpose computers, to full execution of a particular lan-
guage by a speclal purpose machine. The efforts reported
by Melbourne and Pugmire in 1965 showed interesting devel-
opment of new machine language features[ME65]. Their work,
as well as that of Bashkow, Sasson and Kronfeld[BA67] andi
alsc Sugimoto[SU69], was directed at full execution of a
programming language. The realization of their goals was
achieved by the members of the SYMBOL project[SM71]. Al-
though direct execution was achieved for SYMBOL, 1its usage
has not yet expanded significantly outside of its own lab-
oratory vicinity.

In contrast to the direct execution machines, the
Burroughs line of computers starting with the B5000 Have
resembled the system described by Anderson. Common tasks
for executing ALGOL programs were reduced to hardware
features of the machine. Such things as string processing
instructions have become standard on Burroughs machines,
More important, the B6700 has incorporated a special feature
for addressing program variables at different levels of the
program with the hardware. Thus a thread of hope exists
that the hardware may yet evolve which will address itself
to the tasks it 1is expected to perform.

A more recent trend in computing has been toward remote
usage of computers. This trend was initiated by the work of
Strachey in 1959[ST59]. Ry 1965 a QUICKTRAN system was being
readied for use at IBM Datacenters in New York and Los An-
geles[C&EN65]. Hands-on usage of a large computer became

attractive for several reasons. Problem=solvers wanted to

get answers quickly but were having to wait hours or days
for job turn around. Thus remote usage offered users the
avallability of quick results. In addition to time con-
siderations there were certain problems which were best
solved by tuning the algorithm through the judicious selec-
tion of input parameters. These problems required several
separate executions in order to home=-in on the solution with
the correct data. An advantage of remote usage for this
type of problem would be to allow the programmer to interact
directly with the program and produce the necessary results.
With remote time-sharing the sngineers and scientists could
avolid the long turn-around time and get their answers when
they negded them. Furthermore these algorithms which re-
quired tuning could be solved in a single sitting where a
more coherent tuning method could be employed.

Time sharing has become an important tool for using the
computer. Much like other tools, time sharing places more
load on the central processor. iMore users means more complex
systems which 1n turn require more complex tasks of a com-
puter which is not designed to do exactly the tasks réquired
of it. The computer has evolved slightly under the time-
sharing load. New system configurations include the neces-
sary equipment to handle remote communications automatically
and consideration is usually given to the problems of sSwap-
ping jobs on the machine. Time sharing usage has grown to
the point where every medium tec large scale computer and
even some minl-computers support a remote terminal time

sharing system.

One such system is APL which is supported by IBM on
several of its products including the 360 and 370 series
computers. APL is an interactive system based on the
mathematical notation, A Programming Language, developed
by K. E. Iverson[IV62]. It offers an enriched operator
set and much improved manipulation of arrays over FORTRAN,
APL\360 1s the IBM 360 version of APL. It is a time shar-
ing service available for scientific problem solving using
a large computer aad is recelving wide acceptance. With
its wide acceptance APL has become the target for machine
design changes. Abrams proposed an architecture which
would aid greatly in APL interpretation[AB70], and Thurber
and Myrna have suggested a more modernistic architecture
involving beyond the state of the art cellular circui-
try[TH70]. A major effort was put forth by IBM at its
Palo Alto Scientific Center where a direct execution machine
was realized for APL[HA73]. This was accomplished by devel-
oping specilalized microcode for an IBM 360 Model 25 computer.,
The system produced was intended for a single user but the
obvious intent was to show that APL could be realized as a
machine language.

This thesis suggests a different approach to machine
assistance for APL interpretation. Several problems related
to the processing of APL are identified which exhibit the
feature that they are sufficiently simple but yet time- or
space-consuming for the central processor. These problems
are then removed from the central processor entirely and

placed on the hardware at the remote terminal. The tasks

must be simple in order to be economically feasible at a
remote terminal. Since there are several terminals in a
time sharing system and since each terminal is not used
all the time, the cost of each unit must be kept low in
order to avold tying up capital investments in unused
equipment. Those processes which are amenable to removal
have been implemented in an experimental terminal, The
tasks chosen for removal as well as some tasks which were
considered but not chosen are presented along with the
implementation used. An analysis of the performance of
the system under test conditions is presented and suge
gestions are made for changes or additions to the terminal.
The task considerations are presented in Chapter II
and a block diagram and general system description is
given in Chapter III. The detailed design of the subsystems
is covered in Chapter IV while Chapter V presents the re-
sults of measurements taken from the finished system., Sum=-
mary and conclusions are presented in Chapter VI which also
presents the extenslions and changes which would be made for

further research along these lines.

lhe systems to which this paragraph refers are des-
cribed in[SA69].

II. Separation of Interpreter Tasks

In this chapter the general problems involved in
interpreting a computer language are discussed briesly.
Each task is then restricted to the language APL and an
analysis is made of the feasibility of the removal of
that task from the central processor to the remote ter-
minal. In some cases problems are grouped into classes
and then treated as one problem.

The interpretation of a computer language typically

involves two phases[GR71]. First the source language must

be scrutinized to extract the meaning of the sentential
forms. According to Gries this is called the compile
phase[GR71]. Once the meaning has been determined the
statements must be executed in some predetermined manner

during the execution phase. Although both phases repre-

sent computational work, the execution phase is composed
of tasks which are similar in nature to the capabilities
of a modern computer., Such tasks as the addition or mul-
tiplication of two numbers are simple examples of how
execution tasks and machine capabilities match.

The efficiency of performing a task in a computer can
be defined in terms of the number of machine language in-
structlions required to perform that task and the amount of
time needed to execute each instruction. The performance

is most efficient when one fast instruction is required,

less efficlent when several fast instructions are used or
when one slow instruction is used, and least efficient when
several slow instructions are needed. So when the tasks to
be performed resemble the machine language, an efficient
performance 1s possible. As stated earlier, the execution
phase of interpretation is composed of tasks which match
modern computer capabilities., These tasks then can be per-
formed efficiently in the computer.

In contrast, the compile phase of an interpreter must

process the source code, input to the interpreter, character-
by-character. This involves comparing characters and strings
of characters, and moving strings of characters around in
memory. Although modern computers are capable of character-
string manipulation, the instructions for doing the mani-
pulation are not as fast as simpler arithmetic instructions.
Furthermore, many instructions are often required in order
to do such things as recognizing program names and maine-
taining a table of the names found in the source code. 1In a
true interpreter the source code is compiled each time a line
is interpreted, even though it may have been compiled before.
This fact and better efficiency of execution make compilation
the most critical phase of an interpreter so far as overall
effectiveness 1s concerned. Thus the compile phase is the
most sulted for enhancement by better hardware features.

The compile phase of an interpreter is very much similar
to the compile phase of a true compiler. The two compilation
tasks differ primarily In the results they produce. The

complle phase of an interpreter might produce something on

the order of a Polish notation representation of the input
source code, while the compile phase of a compiler might
produce something resembling a parse-tree to be used by a
code generation phase. The remainder of the compile phase

1s similar whether it is part of a compiler or an inter-
preter. Thus 1t is possible to relate to compiler technlques
when analyzing the complle phase of an interpreter. Hence-
forth the word "compiler" will be used to refer to the com-
Pile phase of either a true compiler or an interpreter.

The input to a compiler is in the source language of
the compller which is defined over some alphabet of charac-
ters. The compller must initially determine the combination
of characters forming individual words in the input. Words
are the smallest items which have meaning independent of
other input items. Words are used to form the sentences in
the source language, and sentences convey the semantic
meaning of the program. Historically, compilers have been
written such that they first separate the words and then
determine the program meaning by analyzing the particular
sequence of words in the input. Several facts about com=-
pilation and computer characteristics dictate this approach.

First, since it is necessary to scan the sentence sev-
eral times, the sentence should be in an easily scanned form.
Computers are not especially capable of scanning characters
efficiently; thus, a better form for the sentence is desir-
able. An internal coding of the word sequence which com-
prises the sentence is normally chosen; this internal form

is such that an efficlent analysis can be performed. Integers

are often used for this purpose and the input characters
are converted to a stream of integers.

The first task then of a compiler is to reduce the
input sentences from a character form to a word form.
This task, whlich is performed by a scanner, requlres the
character-by-character scanning of the source code. The
scanner must identify the input words and determine the
classification of each word. This requires a simple for-
ward scan of the text since the grammar for the words over
the alphabet is almost always regular and so is recogniz-
able by a deterministic finite state machine[KA72]. The
simplest task of bnly determining word types and boundaries

is the lexical analysis., Often included in the scanner are

the abilities to do various further classifying operations.

These include operator classification, name table manipula-

tion and number conversion, all of which are covered more

fully in Chapter IV, With the possible exception of the
string manipulation features of certain modern computers,
the scanner tasks are not elementary tasks for a computer,
Character-by—-character operations require a separate pro-
gram cycle for each character processed, which often runs
into thousands.

Past research has given some attention to lexical
analysis. The AED RWORD system described by Johnson, et al.
in 1968, represents the application of formal finite state
automaton theory to lexlcal analysis[J068]. They describe
a working system with which a lexical analyzer can be con-

structed automatically from a high-level description of

the grammar of the tokens. The resulting analyzer has the
form of a table which is fed into a skeleton program. The
skeleton program uses the table to make decisions and per-

form the lexical analysis.

The name table, also called the symbol table, has been

covered in the literature to a great extent[BE70]. The
major efforts have been in various organizational schemes
aimed at reducing the time for finding a name in the table.
Various techniques including linear organlzation, alpha-
betlzatlon and hash coding have been studied, yet symbol
table manipulation can be a time consuming task in a com-
piler. This reflects the inability of modern computers to
handle the character operations effectively.

The operator classification and number conversion pro-
blems have not been attacked vigorously. Operator classifi-
cation 1s used to identify operators further than just "oper=-
ator", e.g. arithmetic operators might be distinguished from
boolean operators. Operator classification can usually be
performed using only a very small amount of computer re-
sources. This 1s due to the relatively small number of oper-
ators allowed, and the simple one-character spellings most
often used for operators.

Number conversion refers to the operation of converting
the character representation for numeric values into a ma-
chine internal form which is easily manipulated. Number
conversion becomes complex due to the number of sub-items
and special cases Involved. For example different treatment

must be given to the integers and the fractions., While

operator classification requires an insignificant amount of
resources, number conversion often requires a large section
of program for the reason just given.

After the scanning of the input program the remainder of
the complle phase must determine the "meaning" of the en-
tire program. Syntax and semantic analyzers are used for
this task. The syntax analyzer checks for syntactic cor-
rectness in terms of the language being processed whereas
the semantic analyzer tries to extract the unambiguous
meaning of the input. These routines represent the hardest
parts of the compiling process and often are composed of
rather ad #oe routines to do various pieces of the whole
task. The semantic analysis precedes only the output gen-
eration of the compile phase of an interpreter: once seman-
tics are determired it remalns only to produce the output
and execute the progranm,

In addition to compilation and execution, an inter-
preter needs some back-up support in the form of source code
acquisition and output disposal in order to provide good
service, These will vary vastly depending on the particular
interpréter in question. For check=-out compile-type inter-
pretation the source code may well be on cards, but for time
sharing, the source would be a terminal and an elaborate
editor might be used for the source acquisition portion.

The output function varies from result printing to source
code listing again depending on the environment of the

interpreter.

The language APL was chosen for this project because
of its excellent features both for interpretation and for
programming. The simple right-to-left execution precedence
simplifies the execution phase while the rich operator set
enhances the compile phase. Since each operator can be
extenaed to arrays of data, the execution phase might in-
volve a full array operation for only one operator recog-
nized by the compile phase. This reduces the time of the
complle phase for APL as compared to a language which would
require explicit source-code loops for array operations.
The reduction of the compile phase will reduce program
interpretation time for reasons given above,

Consider the specific process of interpreting APL.
Initial lexical analysis can proceed from left to right,
character by character, to determine the input words.

These words are then scanned by lines from right to left

to extract the semantics and effect the execution. Syntax
checking is performed both at the character level and at

the word level to assure properly formed words and sentences
before attempting semantic analysis. The character opera-
tions of the lexical analysis are not the sort of operations
a computer does efflclently. With each successive incoming
character the interpreter must determine by some method,
what type of input token 1s arriving and whether it is syn-
tactically correct. That operation could require several
instructions for each character so the scan operation, tri-
vial as 1t may seem, can take a significant portion of the

total interpretation time. Because the lexical analyzer

works on the original characters it 1s reasonable to con-
sider placing it closer to the source of the characters.
In the case of APL, a time-sharing type interpreter, this
means placing the lexical analyzer at the remote terminal.
By placing it at the terminal the task can be done by
speclal-purpose hardware much more capable of lexical
analysis than the general-purpose central processor,

In addition to the lexical analyzer an APL scanner
would include the same extra operations of any compiler
scanner. Namely, the symbol table and number conversion
features would be included in order to separate them from
the actual syntactic and semantic analysis. The symbol
table for APL contains the spelling of all identifiers,
both variable names and function names, along with attri-
butes of the names. A symbol table entry for APL\360 con=-
tains the information as shown in Figure 2.1. The symbol
table 1s organized in such a manner that given the spelling
of a variable name it can be quickly ascertained whether
that symbol is in the table and if so where it 1s located
and what its attributes are.

Machine hardware today does not make symbol table opera-
tions easy or fast. For this reason it 1s desirable to en-
hance the scanner by the introduction of a fast, automatic,
symbol table. This table could be coupled with the lexical
analyzer at a remote terminal to provide the distinect advan-
tages of reducing the size of the symbol table entry for
each item in the interpreter symbol table, and reducing the

amount of data transmitted to and from the computer.

The first advantage is gained by eliminating the
mnemonics for the hames from the interpreter symbol table
while the second is realized by coding the names into
integers. This is possible because of the nature of APL
time=-sharing operations. The user works with the computer
from a remote terminal where he prepares, debugs and executes
his programs. The spelling of his variables is of interest
to him for obvious reasons whereas the interpreter would
need the spellings only to distinguish one variable from
another., If the remote terminal could distinguish between
variables, and code the spellings into integers, then the
interpreter could simply index into its symbol table to find
the desired symbol attributes. This has the further effect
that each symbol now becomes a fixed-length item to be trans-
mitted which in most cases will be shorter in the coded form
than in the original spelling. Thus the second advantage is
obtained since the transmission load on the 1line connecting
the terminal and the computer will be reduced at the expense
of more complex hardware at the terminal.

Number conversion in APL is another character-by-charac-
ter process which could be removed to the terminal to complete
the scanner at the terminal. This operation would have a les-
ser effect insofar as interpretation time goes, but as stated
earlier the amount of code for this task can be large. By
converting all number tokens to an internal form, the charac-
ter-by-character transmission and conversion are removed from
the computer, This allows the interpreter to be written com-

pletely devold of a scanner portion in its compile phase.

The syntactic and semantic analysis of APL on the other
hand require more complex manipulation of the data. The
hardware required to do these tasks would of necessity be
general-purpose in nature due to the complex statement types.
It should be pointed out that Holz[HO73] has developed an-
effectlive element for the purpose of syntactic and partial
semantic analysis. He achieves the general-purpose feature
by using a special-purpose programmed device which produces
an intermediate coding form similar to Polish notation. The
cost of adding such hardware to a single user terminal is
prohibitive. The use of Holz's technique to process the
tokens after they reach the computer, however, would allow
a multi-user APL interpreter to share the cost among the
system users. In conjunction with this work, syntactic and
semantic analysis are left up to the central processor which,
as shown by Holz, could be made to perform those tasks effi-
ciently.

The execution phase as previously stated is efficient
in current processors, even for APL. Although methods of
enhancing the array manipulation are needed and have been
suggested by Abrams[AB70] and others[TH70 & HA73], these
methods like the syntactic and semantic techniques are best
left up to the central processor due to cost- and user-
sharing potential,

The back-up operations for APL provide another source
of removable tasks. The source acquisition is done in two
modes for APL, direct-execution mode and deferred-execution

or stored-program mode. In direct-execution mode a single

line of APL code is accepted from a terminal and executed,
The deferred-execution mode however accepts input lines and
stores them by means of a‘function-definition mechanism
whlch applies names to groups of lines. Subsequent input
can then be used to cause the execution of stored lines.
During a programming session, the user may wish to change
a stored function, but the problems involved in changing
a stored program are again tasks which most computers are
not designed for. Searching through characters, changing
individual characters and inserting or deleting characters
can all require complex coding to determine such things as
the location in the text where editing is to occur and the
character, characters, string or strings to be operated upon.
Current technology in the field of computer terminals
allows this editing to be done at the terminal. This re-
moves more load from the computer simply by taking advantage
of current technology. The exact editing mechanisms of a
terminal are described in full detail in Appendix A. Fur-
thermore, if the symbol table is placed at the terminal
then it becomes necessary for the editing to be done at
the terminal since the APL interpreter in the processor
does not have sufficient information to do a correct editing
Job on the source code. This is because of the form of the
source code which would be stored by the interpreter. For
instance, if identifiers are coded to integers and the
spelling is not available to the interpreter, then a mnemonic
in the source (e.g. NAMEl) cannot be replaced by a different
mnemonic (e.g. NAME2) from within the interpreter. At the

terminal, however, the spelling is known and the desired
changes can be made.

Output from APL to a termlnal has two forms: source-
code listing and program-generated output. A small savings
in central processor usage could be achieved for the source-
code listing if the scanner is at the terminal. The source
code would then be in word form. If the source code were in
word form, it could be converted to the original character
form. This assumes the word form of the source code to be
unambiguous which it must be if the coding scheme is to
work at all. Conversion to the original form can then be
done only if 1l)the spelling of identifiers is available,
2)the conversion of numeric items is possible and 3)all
other tokens are directly convertible to characters.

The first requirement i1s fulfilled if the symbol table
is present and can be accessed by the terminal hardware.
Requirement three can be fulfilled by properly defining the
initial converslons from characters to tokens, but require-
ment two 1s not so easily solved. Unlike input-number con-
version where one algorithm can be used for all the numbers,
output conversion would require special treatment of numbers
depending on the environment of the output number as well
as its value. In some cases it may be desirable to print
an Integer as a floating-point number or in scientific nota-
tion depending on the context of the output. For instance
when an array or a vector of numbers is printed it is de-
sirable to have all elements printed in the same format even

though some of them are integers while others are floating

point. The number of digits in the output must also be
controlled in some manner and should interact with all the
other features of output number conversion. Because of
this complexity of the output number conversion it will be
left as an extension of this project. Although the pos-
s1bility of reducing the processor load exists if output
number conversion is done, the hardware necessary to do
such a task at a terminal would not be sufficiently effec-
tive.

The excluslon of output number conversion does not
prohibit the listing of the source code since the numeric
items can be listed by using a character communication
mode described in Chapter IV. Thus source code listing
can be done, but not all features are deemed suitable for
implementation at the remote terminal.

Program output can be in the form of error and diag-
nostic message printing, program numeric output and program
literal output. Each of these types can be achieved by the
interpreter via the character mode mentioned above, since
the interpreter has all the required information for the
display. Although some reduction of the processor load is
possible here, the program output is such a small portion
of interpreter work that no measurable effect could be made
by doing program output processing with special hardware.

It has been argued that the prime way to reduce pro-
cessor load for APL is to do those tasks which the proces-
sor does repeatedly but cannot do efficiently. Those are

the lexical analysis, symbol table operations, input number

conversion and editing tasks. The syntax analysis, semantic
analysis and output number conversion as well as all parts
of the actual APL execution are left to the computer either
because of the inherent complexity of the task or because

of the capabilities of the computer to be effective at that
task. The tasks left to the brocessor at this time have not
necessarlly been ruled out so far as removal to a remote
terminal goes. They simply do not exhibit the properties of
being time- or Space=consumling, and yet sufficiently simple

to be implemented effectively in remote hardware.

.Symbol Table Entry

0 {0) Symbol class 1{1)
(See Note 1) Pointer to M-entry of this object
{zeros if object undefined)
4 {4) Symbol 5 (5)
Length (in bytes) Symbol name or offset to printname
. {See Note 2)
Notes:

l. Symbol c1as§és

X'0s? Variable

X'12¢ Defined function, with arguments
X'13* Defined function, no arguments
X*'15°* Group

. 2. Symbol Name

If symbol length less than 4, éymbol name is at offset 5,
in Z-codes, and left justified.

If symbol length greater than or equal to 4, offset 5 contains
offset (from M) to printname M=-entry containing symbol name.

Figure 2.1

A Symbol Table Entry for APL\360 _
Taken from APL\360-0S and APL\360-D0S
System Manual, IBM,LY20-0678-0

