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Introduction

This thesis is concerned with two problems of infinite
group theory:
(1) Residual finiteness with respect to conjugacy (RFC).
(A group G is RFC if whenever x 4 y in G there is
a finite quotient G/N of G with x 4 y in G/N).
(2) The existence or non-existence of zero-divisors

in group rings of torsion-free groups.

Chapter I consists of basic definitions and notation.
Chapter II defines and states some elementary properties
of the profinite topology on a group (the profinite topology
is the topology generated by taking the subgroups of finite
index as a base for the neighborhoods of the identity).
The term '"profinite topology" is mainly a way of saving
words in this thesis since we do not deal with topological

concepts. The one possibly original result in this chapter

is:

Theorem 20 B: 1If G is a polycyclic group and H is a

subgroup of G, then the profinite topology of G
induces on H its profinite topology. 1In particular,

G is residually finite.

The residual finiteness of polycyclic groups is originally
due to Hirsch [14]. The above theorem shows that polycvclic
groups satisfy a stronger property, but its proof is analogous

to the proof of residual finiteness. We give another proof



of Theorem 20 B in Chapter VI.

Chapters III and IV are preparations for Chapter V,
but the results of Chapter III can stand independently.
These are results concerning the congruence subgroup
property (CSP). They are based on an arithmetic theorem
of Chevalley [7] (Theorem 27). In order to state these

results we have to fix the following data:

K is a finite algebraic extension of @ and R is its ring
of integers. A subgroup G of GL(n,R) is said to have the
congruence subgroup property (CSP) if for each subgroup

H of finite index in G there is an integer m € N such that

H=2({g €G: g =1 mod mj}.

Theorem 29: Suppose G is a subgroup of T(n,R), the subgroup

of GL(n,R) consisting of upper triangular matrices. Then

G has the CSP.

Theorem 34: Abelian subgroups of GL(n,R) have the CSP.

In Chapter IV we translate Theorem 34 into the following
technical result, which is the main preparation in proving

RFC for polycyclic-by-finite groups:

Theorem 37: Let A be a f£.g. abelian group, and H an

abelian-by-finite group acting on A. Suppose X,y € A are
such that y # h-x for all h € H. Then there is anm € B
such that y # h-x mod mA for all h € H.
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In Chapter V we prove the main result cof this thesis:

Theorem 44: Polycyclic-by-finite groups are RFC.

According to a well-known argument of Mc Kinsey [21],

it follows that:

Corollary 47: The conjugacy problem is solvable for

polycyclic-by-finite groups.

RfC for finitely generated nilpotent groups was
proved by Blackburn [5] and extended to fg nilpotent-by-finite
groups by his student Toh [26]. Our proof for polycyclic-
by-finite groups is modelled on Toh's proof with Theorem 37

as the crucial extra ingredient.
Chapter VI consists of a pair of unrelated corollaries
to the techniques of Chapters II-V.

Chapter VII is devoted to the question of zero divisors
in group rings of infinite groups and is independent of the

preceding. The result obtained is the following:

Theorem 66: Suppose G is an extension of a finitely generated

abelian group by a cyclic group of square-free order, and F
is any field. Then F[G] has no zero divisors if and only

if G is torsion free.

The method of proof is to show that F[G] has a 'ring

of fractions" which is a simple algebra of finite dimension
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over its center. Such an algebra is a complete matrix
ring over a division ring and it ( and hence F[G]) has no
zero divisors if and only if the matrix ring is the ring
of 1 x 1 matrices. It follows from Brauer cohomology that

this occurs precisely when G is torsion free.
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Chapter I: Preliminaries

In general, definitions and notation will be given
concurrently with the text; results from the literature
will be quoted as they are used. Listed here are the most
basic definitions and nctation, and a few basic results
we will need later. General references for this material

are P, Hall [11] and Robinson (23].

1. Definitions and notations:

G is a group
H<G means H is a normal subgroup of G
[G:H] is the index of H in G.

CG(H) = centralizer of H in G

ZG = center of G

gp(X) = subgroup of G generated by X <G

ng(X) = normal subgroup of G generated by X ¢ G
6" = gpig": g € G)

[xl,xzj = xil x£1x1x2 = commutator of X, and x,
[xl,...,xn] = [[xl,...,xn_l], an

(X,Y] = gp{lx,y): x € X, y € Y, for XY cG.

G =v6; v, G=1[v,_46, G]

YIG 2 YZG = ... is the lower central series of G.

G is nilpotent if ynG = 1 for some n.
G is nilpotent of class n if Yo # 1 and Yol = 1.



Z2g6 = 1, 2,G = 26, Z G = fg € G: (G,g] < Zn_lG}

ZOG < ZIG S ZZG S ... is called the upper central series of G.

¢ =60, ¢ _ gn-1) ((n-1),

b

¢ 2 (D) 2 g(2)

G is solvable if G(n) = 1 for some n.
G is solvable of length n if G(n'l) # 1 and G(n) =1,

... is the derived series of G.

G is polycyclic if there is a finite series G = GOD GID ..J>Gn=l
where each Gi/Gi+1 is cyclic.
G is noetherian if every properly ascending chain of sub-
groups of G is finite.
G is Hopfian if every surjection ¢: G - G is an isomorphism.
Certain classes of groups are denoted as follows:

G = abelian groups

h = nilpotent groups

8 = solvable groups

£ = polycyclic groups

& = finite groups N

fgt = finitely generated abelian groups

If C and & are classes of groups, new classes are given by

C-by-8 = extensions of a C-group by a 8-group, i.e..G is
a C-by-8 group if there is an exact sequence 1 « C -G - D =1
where C € C, D € 9. '

RC = residually C - groups

= subdirect products of C-groups.

2. Basic facts.

Assorted results which will be used occasionally are

given here.



Prop 1: G is nilpotent of class s n = ZnG = G.
Prop 2: Noetherian groups are Hopfian.

Prop 3. G a nilpotent group, S< G, G=gp(s,6%.
Then G = gp(S).

Corollary 4. G a nilpotent group, G = ngfx}.
Then G is cyclic.

Prop 5: G a f.g. nilpotent group. Then:
G is infinite  2G is infinite
© ZG contains an element of infinite

order.

Prop 5: G a f.g. nilpotent group. Then there is an integer
m such that for all n € B, each element of ¢™ is an
n-th power in G.

Def. G is a group, S a subset of G.

The isolator of S in G is

IG(S) = (g €G: g €S for some n € Z, n # 0}.
Prop 7: G a nilpotent group, H a subgroup of G. Then
(1) IG(H) is a subgroup of G,
(2) 1f G is f.g., [IG(H): H] < =,

Prop 8: f£f.g. nilpotent groups are polycyclic.
G is polycyclic « G is solvable and noetherian.



Chapter II. The Profinite Topology

1. The Profinite Topolbgy

Def. The profinite topology on a group G is the topology
generated by letting the subgroups of G of finite index in
G form a base for the neighborhoods of the identity of G.

It is denoted P (G).

If H is a subgroup of G, then any topology 3(G) on G
induces a topology on H, which we denote by JG(H). If K
is a subgroup of G of finite index in G, then H N K is a
subgroup of H of finite index in H. This shows that the
profinite topology of H is stronger (has more open sets)
than the topology induced on H by the profinite topology
of G. We denote this: »(H) = OG(H). This says that the

inclusion H - G is a continuous map.

The following well-known results will be used later:

Prop. 9: In a group G, the normal subgroups of finite

index form a base for the profinite topology of G.

Proof: 1If H is any subgroup of finite index in G, then
H has only finitely many conjugates Hl"'Hm in
G, and H = NH; is a normal subgroup of finite
index in G such that H € H. This proves the

proposition,



Prop. 10: If H is a subgroup of finite index in G, then

P(H) = Pg(H).

Proof: Trivial.

Prop. 11: H a subgroup of finite index in G, K any subgroup
of G. Then #(K) = PG(K) o P(H N K) = pH(H N K).

Proof: Trivial.

Prop. 12: 1If G is finitely generated and H is a subgroup

of finite index in G, then H is finitely generated.

Proof: Magnus, Karass, and Solitar [18], p. 90.

Prop. 13: G a finite extension of a f.g. solvable group
such that G has finite exponent m. Then G is finite.
Proof: It suffices to consider G f.g. solvable. Then

G/G’ is f.g. abelian of exponent maxd hence

finite. G’ is finite by Prop. 12 and induction
on derived length of G.
.. G is finite.
Prop. 14: G a finite extension of a finitely generated
solvable group. Then ©(G) coincides with the topology
generated by the subgroups G" = gpfgm: g € G} for m € H.
Proof: G/G™ is finite, by Prop. 13. If H<G and

|G/H| = m is finite, H 2 G,



Prop. 9 says that in considering the f-topology on a
group G, we only need to look at normal subgroups of finite
index in G. Prop. l4 says that in case G is f.g. 8-by-3
(which it almost always will be in this thésis) then we only
need to look at the groups Gm, m € §. Note that the subgroups
G" are fully invariant subgroups of G-that is, any endo-

morphism of G carries G® into G".

2. p-groups
As noted above, if H is a subgroup of G, then ®P(H) =z PG(H).

It is easy to see, for example, that if G is a f.g. abelian
group, then P(H) = PG(H) for every subgroup H of G. We

will show ultimately that this is the case for a much larger
class of groups, namely polycyclic-by-finite groups. We

now give a name to this notion and record some of its

elementary properties.

Def. A group G is a p-group if P(H) = PG(H) for every
subgroup H of G.

Prop. 15: p-groups are residually finite.

Proof. Suppose G is a p-group, g € G, and g # 1.
gpfgl = <g> & G is cyclic, so there is a
subgroup HO of finite index in <g> such that
g £ Hy . Since G is a p-group, there is a
normal subgroup GO of finite index in G such

that Gy N <g>=Hy, i.e., g £ G,.



Prop. 16: H a subgroup of finite index in a group G.
Then H is a p-group © G is a p-group.

Proof: Trivial

Prop. 17: Subgroups of p-groups are p-groups

Proof: Trivial.

Prop. 18: Quotients of p-groups are p-grow s.
Proof: Let K = G/H where G is a p-group and suppose
K = GO/H 2 Gl/H where [GO/H: Gl/H] < o,

Then [GO: Glj < » so there is a subgroup M

of finite index in G such that M N Go < Gl‘

Then MH N G0 < Gl' MH/H is of finite index

in K= G/H and M N GO/H < Gl/H'

m
> H —m> G > K >

Prop. 19: Suppose 1
is exact. Then G is a p-group » H and K are p-groups and

Pe(H) = P(H).

Proof: = follows immediately from the preceding

propositions.
<= Suppose GO 2 G1 are subgroups of G with G1

of finite index in GO'

Let HO=HﬂGO, KO = TT(GO), Hl = anla K]_ = T"'("]_)'



Thus we have exact sequences

1 > Hl . G1 > Kl S |
1 > HO > G0 > KO > 1
1 > H > G > K ~ 1

OG(HO) = P(HO) since OG(H) = 2(H) and H is a ,-group.
.. we can choose G2 ¢ G of finite index such that

G, N HO < H,.

2 1

n(G1 N GZ) is of finite index in KO so there is a

K3 ¢ K of finite index such that K3 N KO < n(Gl N GZ)°

Let G3 = n-l(K3). Then G2 N G3 is of finite index in G, and:
x € (G2 n G3) N GO
= u(x) € *(GB) N KO = K3 N KO ‘ n(G1 n G2)
> m(x) = n(y) for some y € Gl n G2
»xy'l € Hy N1 G, © H;
> X € H1 . Gl = G1
L(Gz n G3)ﬁ Gy ' Gy, as required.
o
L
Corollary 20: Suppose 1 - H - G - K -1

is a split extension and H is {initely generated. Then G
is a p-group = H and K are p-groups.
Proof: We need only show that OG(H) = ©(H). Suppose
HO is of finite index m in H. Let H1 = 'L < H:

[(H:L] = m}. H1 is of finite index in H, H1 ‘ HO’



and H, is a characteristic subgroup of H. Thus

1
Hld G, so Hl - ¢ (K) is a subgroup of G. It is
clear that H1 . 0(K) is of finite index in G and
that H n[Hl - o(K)]= H1 < Hy. - PG(H) = p(H), as
required.
Prop. 20A: Cyclic extensions of finitely generated p-groups
are p-groups.

Proof: For finite cyclic extensions, this follows from
Prop. 16. For infinite cyclic extensions this
follows from Corollary 20, since such an extension
automatically splits.

It is an immediate consequence of Prop. 20A that polyecyclic

groups are p-groups, and hence residually finite by Prop. 15.
The residual finiteness of polycyclic groups 1s originally

due to Hirsch [14]. We will give another proof that poly-

cyclic groups are fp-groups in Chapter VI, Section 1.

Theorem 20B: Polycyclic-by-finite groups are p-groups,

and hence residually finite.
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Chapter III. The Congruence Topology;

A Generalization of a Theorem of Chevalley
1. Notation

For Chapter III, we fix the following data:
K is a finite-dimensional extension of Q.
R is the ring of integers of K; as a Z-module, it is free
of rank [K:Q].

U(R) is the group of units of R; it is a finitely generated
abelian group (Dirichlet Unit Theorem) [27].

T(n,R) < GL(n,R) is the group of upper triangular matrices
in GL(n,R).

N(n,R) © T(n,R) is the group of upper unitriangular matrices
(upper triangular matrices with 1's on the main diagonal).
It is a torsion free nilpotent group of class n-1 and

rank r- E—%ﬂ » where r = [K:@] = rank Zz(R).

8(n,R) © T(n,R) is the group of invertible diagonal matrices.

It is isomorphic to U(R) x ... x U(R) and hence is a finitelv
—

generated abelian group.

T(n,K), N(n,K), A(n,K) are defined analogously.
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There are split exact sequences

1 ——— N(n,R) > T(n,R) > A(n,R) > 1

1

> N(n,K) —> T(n,K) > 1

> A(n,K)

where the splitting 4 - T is inclusion and the homomorphism

T - A is "erase the off-diagonal entries".

2. The Congruence Topology on GL(n,R).

In the case of the group GL(n,R), the ideal structure
of R can be used to define a topology on GL(n,R), called

the congruence topology, as follows:

Def. If G # 0 is an ideal in R, C(G) denotes the kernel of
the canonical homomorphism GL(n,R) - GL(n,R/G). C(G) is
called the G-congruence subgroup [of GL(n,R)]. The congruence
topology is the topology generated by taking the congruence
subgroups C(G), as G runs through all nonzero ideals of R, as

a base for the neighborhoods of the identity.
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If @ # 0 is an ideal in R, then there is a positive
rational integer m € H such that (m) = mR € G. For such

an m, C(m) € C(G). In topological language this says:

Prop. 21: The congruence subgroups {C(m), m € N} form

a base for the congruence topology of GL(n,R).

If G is a subgroup of GL(n,R), then the congruence
topology of GL(n,R) induces a topology on G. We will call
this topology the congruence topology on G and denote it
by C(G). For G # 0 an ideal in R we will define the G-

congruence subgroup of G to be

G(@) =GNC(G) = {g € G: g = 1 mod G?.

Note that the C(G) are normal in GL(n,R), so the G(r)
are normal in G.

The congruence topology on G depends not only on the
abstract or intrinsic subgroup structure of G, but on the
way G lies in GL(n,R). However, the congruence topology is
at least independent of conjugations by elements of GL(n,K),

in the following sense:

-1 1

Prop. 22: G, 0Go™~ < GL(n,R), where o € GL(n,K). d: G - oGo~
the isomorphism of growp s given by conjugation by o. Then

c is an isomorphism of congruence topologies.
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Proof. Choose r € ¥ such that ro, ro”l ¢ M (R). (i.e.

. . -1
clear denominators in o and ¢ 7).

Then for any g € G and any ideal G # 0 in R:
g = 1 mod raa = og = ogc'l = 1 mod r26 = g =1 mod G.

~ 6e6) 2 5 1 (oeo Yy (r26)] 2 6(re)

This proves the lemma.

For any ideal G # 0 in R, R/A is a finite ring, so GL(n,R/G)
is a finite group. A consequence of this is the following

basic property of the congruence topology:

Prop. 23: For any subgroup G of GL(n,R) and any ideal G # O
in R, G(G) has finite index in G. Thus the congruence

topology on G is weaker than the profinite tcpology ["(G) s P(G)].

Proof. G(G) is the kernel of G - GL(n,R/G) and the latter

is finite.

It is reasonable to ask the question: For which subgroups
of GL(n,R) do the profinite and congruence topologies coincide?

This question motivates the following definition:

Def. A subgroup G of GL(n,R) has the congruence subgroup

property (CSP) if the profinite and congruence topologies

of G coincide [P(G) = C(G)].



14

This question has been studied extensively for the
subgroups SL(n,R) = fg € GL(n,R)? det g = 1} and the
following results are known:

(1) SL(2,R) does not have the CSP, even for R = Z.

(2) SL(n,Z) has the CSP for n = 3 (Mennicke [221]).

(3) SL(n,R) has the CSP for n =2 3 if K (the field

of quotients of R) is not totally imaginary
(i.e. if K embeds in R). SL(n,R) does not have
the CSP in general for n 2 3 if K is totally
imaginary (i.e., if K has no embedding in R).

(Bass, Milnor, Seme [ 4 J]).

The aim of this chapter is to show that certain other
subgroups G < GL(n,R), namely subgroups of T(n,R), do in
fact have the CSP. These results will not be based on the
deep arithmetical results quoted above, but on a theorem

of Chevalley which says:

Theorem 24 (Chevalley [ 7 ]): Every subgroup of GL(1,R)
has the CSP.

The theorem as stated by Chevalley actually says more
than the above and a more precise statement of it will be
made in the next section. I was referred to Chevalley's
paper by Hyman Bass, and I thank him. Chevalley's result

is the main ingredient in the proof of the following result:



15

3. Subgroups of T(n,R) have the CSP.

The theorem is obtained by first proving the same
result for subgroups of N(n,R) and A(n,R) and then combining
the two. The CSP for subgroups of A(n,R) is a consequence

of Chevalley's theorem.
Lemma 25: For each integer m € B there is an integer
8(m) € N such that if g € N(n,R) and g = 1 mod 6(m), then

g is the m-th power of an element of N(n,R).

1 mod m2,

Proof. 6(m) = m2 works; in fact, if g
then g = h™ where h € N(n,R) and h = 1 mod m. h can be
obtained by solving for the a's, B's, y's recursively in

the equations below:

— —~4m

1 ay B1 Yy 61 e
o _ 1 ay 82 Yo )

1 a3. 83 ..
1 -, -,

— 1—
1 ma4 msl + bl my,y + ¢y m&l + d1 e

1 maz mB2 + b2 _ .

1 ma3
1
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where: the b's are integral polynomials in the a's such

that the degree of each monomial in bi is = 2,

the c's are integral polynomials in the a's and

B's such that the degree of each monomial in c;

is =2 2,
: etc.
Lemma 26: H a subgroup of N(n,R). Then for each integer

m € N there is an integer 6(m) € N such that if g € H and

g
of H.

Proof.

1 mod 86(m), then g is the m-th power of an element

Let Hl = {h-€ N(n,R): hk € H for some k € Z,

k # 0} = isolator of H in N.
By prop. 7 , there is an integer a such that

h € H = h? € H.

Now choose, by Lemma 25, an integer b such that
g € N(n,R) and g = 1 mod b = g is an am-th power
in N(n,R):

Let 8(m) =b. Theng=1lmod b, g € H= g = h°®
for some h € N(n,R).
‘. h € H), so h? € H.

S 8= (h®™ is an m-th power in H.
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Theorem 27 (Chevalley [7]): G a finitely generated subgroup
K*, the multiplicative group of non-zero elements of K,

m € ¥Nand b € Z Then there is an integer a € N, prime

to b, such that if g € G and 8 = 1 mod a, then g is an m-th

power of an element of G.

The a selected is chosen to be relatively prime to any
of the (finitely many) primes occurring in the denominators
of elements of G. Thus congruence mod a makes sense. The
extra content of this (beyond Theorem 8, which is an
immediate corollary) is that:

(1) G is a f.g. subgroup of K*, not merely of U(R).

(2) The a selected can be chosed relatively prime
to any given b. Bass has pointed out (Bass [ 3 ]) that
instead of a € Z the same result holds modulo some square
. free ideal G in R. However we do not need any of this extra

genema lity.

Lemma 28: K a subgroup of A(n,R). Then for each integer
m € N there is an integer ¢(m) € H such that if g € K and

i

1 mod ¢(m), then g is an m-th power of an element of K.

Proof. If K= A(n,R) =~ U(R) x ... x U(R) the .result

g

is an immediate consequence of Chevalley's Theorem.

If K is any subgroup of 4(n,R) we let K, be the

igolator of K in A(n,R) and proceed as in Lemma

26.
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Theorem 29: G a subgroup of T(n,R). Then G has the CSP.

Proof. Consider the following exact sequence, where

H=G N N(n,R), K=n(G), and m: T(n,R) - &(n,R).
- ¢ LG

1 > H > K—> 1

T

1 —> N(n,R) > T(naR) -2 A(n)R) —> 1

For each m € Hl let
8(m) € E be such that:
g €EH and g = 1 mod 9(m) = g is an m-th power
‘ h in H (Lemma 26).
¢(m) € N be such that:
g €EKand g = 1 mod ¢(m) = g is an m-th power

in K (Lemma 28).
p(m) be an exponent for T(n,R/(m)).

Now suppose g € G and g = 1 mod a, where a = 8(m)-¢lm-p(8(m))].
g =1mod a = n(g) =1mod ¢[m - p(6(m))]
2 n(g) is an m-p(8(m))-th power in K = n(G)
There is an x € G such that n(xm'p(e(m))) = n(g)
g 1P (O®) ¢ y = ger n/G.

1

Further g = =lmod 6(m) and y = xp(e(m)) =l (mod 9(m))

S g-lym € H and g'lym =1 mod 6 (m)

S g'lym = h™ for some h € H.

"g=y"h™ec"=gpith: t € GJ.
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Since the subgroups {Gm: m € N} form a base for the profinite
topology on G(Prop. 14 ), this shows that the congruence
topology on G is stronger than the profinite topology.

But C(G) =< »(G) for any G < GL(n,R).

.. G has the CSP.

4. The CSP and P-groups; abelian subgroups of GL(n,R).

The results of this section are easy corollaries of

Theorem 29. They are the foundation on which Chapters IV-VI
is based.

Corollary 30: Every subgroup of T(n,R) is a p-group.
Proof. Suppose G is a subgroup of T(n,R) and H is
subgroup of G.
C(G) = »(G), Cc(H) = P(H) since G and H have the
CSP.
CG(H) = C(H), by definition of the C-topology
S PG(H) = CG(H) = C(H) = o(H)

-+ G is a p-group.

Prop. 31: G a group, G0 a subgroup of G of finite index
such that G0 embeds in T(n,R), where R is the ring of
integers in K, a finite extension of Q. Then G is a p-
group.

Proof. Corollary 30 plus Prop. 16.
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The final result of this chapter is that abelian subgroups
of GL(n,R) have the CSP. As preparations we nead an upper
triangulation theorem of linear algebra and a conjugation

trick.

Prop. 32: G an abelian subgroup of GL(n,F), where F is an
algebraically closed field. Then there is a o € GL(n,F)
such that oGo~! ¢ T(n,F)

Proof. Jacobson [15], p. 134.

Lemma 33: G is a subgroup of GL(n,R) and o € GL(n,K) is
1

1

such that ¢Go = € T(n,K). Then there is a T € GL(n,K)

such that Gt ~ < T(n,R).

Proof. Choose X € N such that ro, ro~L € Mn(R)’ i.e.,

r clears denominators in ¢ and o-l.

rz(occ;'l) = (ro)c(rc'l) < M (R)

"1
. -1 . X
For g € G, consider oGo = 0 -
‘a

Gys...,a, are roots of the characteristic polynomial of
g and hence lie in R; further, multiplication by r2 clears

denominators in X since rz(oGo-l) < T(n,R)

r2n
r2n-2
< T(n,R) . o
for 1 = )

. TGT-l
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Theorem 34: G an abelian subgroup of GL(n,R), where
R is the ring of integers in a finite extension K of Q.
Then G has the CSP.
Proof. By applying Prop. 32 to G < GL(n,F), where
F is an algebraic closure of K, we can find a

o € GL(n,F) such that oGo~ L ¢ T(n,F).

Let K be the finite extension of K obtained
by adjoining the entries of o, and R its
ring of integers.

1

Then G < GL(n,R), oGo™" < T(n,K), so by modifying

1

¢ via Lemma 33 we may assume that ¢Go ~ € T(n,R).

By Prop. 21, CR(G) = C_(G). [i.e. GL(n,R) and
R
GL(n,R) induce the same topology on G], so we

will call this C(G)

By Prop 22, 3: G - UGU-I is an isomorphism of
congruence topologies; it is an isomorphism of
profinite topologies since it is an isomorphism

of groups.

Finally, UGO-1 has the CSP by Theorem 29 since

965™" < 1(n,R)

L C(G) = C(eGo ) = e(oGe 1) = n(q)
CSP

.. G has the CSP.
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Chapter IV: Group Actions and Orbit Separation

This chapter is mostly technical in nature. The
statement (Theorem 34) that abelian subgroups of GL(n,Z) =
Aut Z* have the CSP is first extended to the analogous
statement for Aut A, where A is f.g. abelian but not
necessarily free. Then it is shown that this implies
an "orbit separation' theorem when an G-by-3 group acts
on a f.g. abelian group. This "orbit separation' is

the main preparation for Theorem 44 in the next chapter.

1. Group actions.

Lemma 35: G < Aut A where G is abelian and A is f.g.
abelian. H is a subgroup of G, and g € G,
g £ H. Then there is an integer m such that
g # hmod m for all h € H. More precisely:
if P Aut A . Aut A/mA is the canonical map,

then pm(g) ¢ pm(H).

Proof:Case 1: A = Z' is free abelian, so G is a subgroup

of Aut A = GL(n,Z).

Note that G is finitely generated since it
embeds in some T(n,R) by the argument of

Theorem 34,
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Hence, since g £ H there is an integer a € N such that
g £ G.H. (i.e. g # 0 in G/H, so gH £ (G/H)® for some
a € m).

By Theorem 29, G has the CSP so there is an integer m € B

such that G2 2 G(m) = fx € G: x = 1 mod m}.
Now g £ G(m) - H) so g # hmod m for all h € H.

Case II: General case. A= Z'x T where T is a torsion

group.

Relative to this decomposition of A, each ¢ € Aut A can
be expressed as a matrix

(a(¢) 0 4) a 0
2 =la(e) (o) =\s

where a € Aut ZP, B8 € Hom zgz?, T), 7 € Aut T, and ¢

operates on ''column vectors'.

Let a be an exponent for T. If m = a does not work,
there is an hy € H such that g = hy, mod a. Then gh(-)1 =
a O)

0 1/.

Let G0

a0
{¢ € Aut A: ¢ = 1 c Aut A,

HO = HnN G,.
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g £ HO, g € G0 so by Case I there is an integer m €B
such that g# h mod m for all h € HO.

Now m = am is as required, since if h € H:
h g Ho = g # hmod a

h € Hy = g # h mod -

2. Orbit Separation

Lemma 36: A a finitely generated abelian group, H an
abelian group which acts on A (not necessarily faithfully).
X,y € A are such that y # h - x for all h € H. Then

there is an m € N such that y # h - x mod mA for all h € H.

Proof. Case I: y ¢ ZH - x, where A is a left ZH-module

in the obvious way.

Ly + 2 - x#0 in A/ZH - x so there is
anm € N such that y + ZH - x ¢ m - (A/ZH-x)

Sy # h(x) mod mA for all h € H.
Case II: X £ ZH - y. Symmetric to Case I.
Case III: ZH - x = ZH - y.

Then AO = 2ZH - x is a ZH-module. For each f € ZH, let

fL: Ag - Aq denote the endomorphism defined by fL(t) =f.t,
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Since ZH-x = ZH-y there is a g € ZH such that y = g-x.

81 AO - A0 is surjective, and hence an automorphism

because A, is a Hopfian group (Prop. 2)

Let H = {h;: h € H} € Aut Ao; G = gpfH;, g;] < Aut Aj.
gL(x) =g -x=y#%h- -x= hL(x) for all h; € H.
. gy £ H < G, so by Lemma 35 there is an m, € |

such that g1, # hL mod my for all hL € Hy.

’, (g-h)-A0 ¢ mOAO for all h € H.
" y-h-x = (g-h) - x ¢ myhq for all h € H, since

Finally, let A {t € A: rt € Ay for some r € K}

1

isolator of AO in A,

and let ng = [Alz AOJ.

"y = h-x mod nymyA = y-h-x € ngmpA N A; © ngmaA; ﬂbA

= y-h'x € mOAO, a contradiction.

~y ? h-x mod nymyA for all h € H.

Theorem 37: A a f.g. abelian group, H an abelian-by-

finite group acting on JA, x,y € A are such that y # h-x

for all h € H. Then there is an m € N such that y # h-x

mod mA for all h € H.

Proof. let H = Kh1 u...u Khr where K is abelian and

hl""’hr € H.
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y # k - (hl-x) for all k € K

y # k" (b, x)

Heace, applying Lemma 36 to K acting on A there
are my,...,m € N such that y # k‘(hi-x) mod m,
for all k € K, i = 1...r,

m=m....m_ works.
Now i - S
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Chapter V: Polycyclic-by-Finite Groups are Residually

Finite with Respect to Conjugacy.

1. Elementary properties of RFC

Def. A group G is residually finite with respect to conjugacy
(RFC) if for each x,y € G with x £ y in G there is a

finite quotient G/N of G such that x 4 y in G/N.

Prop. 38: G is RFC « for each x € G, the set Cx of
conjugates of x in G is a closed subset ofG with the pro-

finite topology.

Proof. If H<G, the set of conjugates of xH in G/H

is CxH = Cx-H.

But C
X

NfC - N: N<G, [G:N] < »} is the
closure of Cx in G with the profinite

topology.

.. G is RFC = Cx = Cx o Cx is closed in G.

Prop. 39 1If G is RFC, then G is residually finite

Proof. Trivial.

2. Toh's lemma.

Lemma 40 (Toh [ 26]): G a group, N a normal subgroup of
G, x €EG K= fg € G: [x,g] € N}

Ky = Cr()
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K, = f[x,k]: k € K;}

Then:
(1) K is a group containing N
(2) K, is a group. Thus K, = [x,K;] =
gp{x,k]: k € K;}.
(3) K,<aK.

Proof. (1) [Ix,gh] = [x,h][x,g]h so K is a group.
K clearly contains N.
(2) [X,kh] = [x,h][x,k] - Ex,k][x,h] if

k, h € K.

S K2 is a group

(3) If g € K and k € K, = CK(N), then

[x,k1® = [x® k8] = [x[x.g], k&]

(x.g]
[x,k8] s [[x.g], k8] = [x.k8)]

L K2 is normal in K.

3. P-by-3 groups are RFC.

This is the most important single result of this
thesis. RFC for f.g. nilpotent groups was proved by Black-
burn [ 5] and was extended to f.g. n-by-& groups by his
student Toh [26 ]. The proof for P-by-& groups is a

modification of Toh's proof based on suggestions of
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John Ledlie. Besides using Toh's theorem as a lemma
the proof shows ''certain similarities" to Toh's. The
crucial new ingredient is Theorem 37. 1In addition, structure

theorems of Hall [10] and Mal'cev [j9] are employed.

Theorem 41 (Toh [26]): G a finite extension of a f.g.
nilpotent group N. Then G is RFC.

Proof. Assume the theorem is false and that G and N
are a counterexample, i.e., G and N satisfy the
hypothesis, but there exist x,y € G such that
X +#y in G but x ~ y in every finite quotient of

G.

(*) Let M be a maximal normal subgroup of G such that
X 4y in G/M. Then G/M and NM/M are a counterexample
to the theorem and now x ~ y in every proper

quotient of G.

(**) Hence by replacing G and N by G/M and NM/M

respectively we may assume that x ~ y in everv

proper quotient of G.

(t) N cannot be finite, since if N were finite G would be
finite; hence N is infinite, so ZN is infinite
and in fact contains an element of infinite

order (Prop. 5).
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In particular ZN # 1, and ZN4G, so x ~ y in G/2ZN; hence
by replacing y by a conjugate of y we may assume that y

y = xv where v € 2ZN.

Let K= fg € G: [x,g8] € ZN}. K is a subgroup of G (Toh's
Lemma) .

Claim: =x ~ y in every finite quotient of K.
For suppose conversely that M is a normal subgroup
of K of finite index in K such that x £ y in K/M.
Then M N ZN is of finite index m in ZN, so 1 #
(ZN)m is a normal subgroup- of G such that (ZN)m <
MNZN < M,

Llet g € G:

g ¢ K=1[x,28] ZN=>1y =xv # x[x,8] = x® mod 2N

gGKay?‘-xgmodM.

Sy 7 x® mod (ZN)™ for all g € G.

"X 4y in G/(ZN)m, a contradiction.
" X ~y in every finite quotient of K as claimed; hence K
and N are a counterexample to the theorem and so we may
assume that G = K; i.e., we may assume that [x,G] < ZN
(to be precise, we would have to replace G by K and

apply the argument of (*) to K).

Let K; = C4(ZN), K, = {(x,k]: k € K

1 1}
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By Toh's Lemma, K2 is a normal subgroup of G=K.

Since x £ y in G, y& # xX = x[x,k] for all g € G, k € Kl.

X £y in G/Kz.
K2 = 1 by(**), so x centralizes K1 = CG(ZN).
x centralizes N. Moreover since x& = x[x,g] and

(x,8] € ZN for all g € G, the conjugates of x all commute.

ng{x} * ZN is an abelian normal subgroup of G which

is centralized by N.

Thus gp.{x} - ZN is a G/N - module and
G

{conjugates of x in G} = orbit of x under the action of G/N.

(***) Since G/N is abelian-by-finite (it is in fact
finite), Theorem 37 applies so there is an integer m

such that y is not in the G/N orbit of x modulo (ZN)™.

i.e. x +#y in G/(ZN)m; since (ZN)m # 1 this contradicts (*%)

and completes the proof.

Remark: 1In Toh's original proof - which we have modified
somewhat-he did not have Theorem 37; so at the point (¥%*)
in the proof he noted that sinee G/N was finite, x has only
finitely many conjugates in G; since G is known to be resi-
dually finite he could then obtain a finite quotient G/M

of G with x 4 y in G/M.
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Theorem 42 (Mal'cev [19]): A p-by-& group is fgh-by-
(fgG-by-3).

Theorem 43 (P. Hall {10]): A 3&-by-(fgh-by-3) group is
fgh-by-=a.

Theorem 44: G a finite extension of a polycyclic group.
Then G is RFC.
Proof. According to Mal'cev, G is fgnh-by-(fgG-by-)
and we assume G is so expressed, with N<9G,

N f.g.nilpotent, and G/N fgG-by-&a.

We assume, as in the proof of Toh's theorem
that we have a counterexample in hand.
(++) N cannot be finite, for if N were finite G
would be 3-by-(fgG-by-3) and hence f£gh-by-3
by Hall's theorem. But fgh-by-3 groups are
RFC by Toh's theorem.

We now proceed as in the proof of Toh's

theorem WORD-FOR-WORD except that at the

point in Toh's theorem marked (+) we now
assert that N cannot be finite for the

reason (+t).
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The proof of Toh's theorem given here adapts, with-

out essential change, to prove the following:

Theorem 45: Let C be a class of groups satisfying:
(1) C is closed under the formation of subgroups
and quotients.
(2) Every g-by-C group is RFC
(3) Finitely generated abelian groups separate
crbits for groups in C. (See p. 36 for definition)

Then any fgh-by-C group is RFC.

4. pP-by-7 groups have solvable conjugacy problem.

As the conjugacy problem plays no role in
this thesis we merely append the following without

further explanation.
Theorem 46 (McKinsey [21]): The conjugacy problem is

solvable for finitely presented RFC groups.

Corollary 47: The conjugacy problem is solvable for

P-by-3 groups.
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Chapter VI: Two Miscellaneous Corollaries

In this chapterwe present two more or less unrelated
results which are corollaries to the techniques developed
earlier.

In the first part of the chapter we show that a poly-
cyclic group G has a subgroup G0 of finite index which embeds
in some T(n,R). We then use this embedding to draw a conclusion
about G. The existence of GO follows from theorems of Kolchin-
Mal'cev and Auslander-Swan.

In the second part of the chapter we show that Theorem
37, which deals with "orbit separation'" in the case of a
group G acting on a finitely generated abelian groﬁp A, is
also true. if A is replaced by a finitely generated nilpotent
group N. We "axiomatize' this argument by defining "orbit
separation' abstractly. The proof is essentially a modification
of the method of the Toh (Theorem 41) to the group action

situation.

1. An application of theorems of Kolchin-Mal'cev and Auslander-

Swan.

Theorem 48: (Kolchin [16]; Mal'cev [20]; cf (6], [20]):
G a solvable subgroup of GL(n,F) where F is an algebraically

closed field. Then there is a subgroup H of finite index

1

in G and a o € GL(n,F) such that oGo™" < T(n,F).
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Theorem 49: (1,. Auslander [2]; Swan [25]):

A polycyclic group can be embedded in GL(n,Z) for some n.

Theorem 50: G a polycylic-by-finite group. Then there exists
a subgroup G0 of finite index in G and a finite algebraic

extension K of @ such that G, embeds in T(n,R), vhere R

0
is the ring of integers of K.

Proof: Using the theorems just stated we can find a

subgroup GO of finite index in G and a monomorphism
G, —> GL(n,Z) ———> GL(n,F)
where ¢ is conjugation by ¢ € GL(n,F), F is an

algebraic closure of @, and E(GO) < T(n,F).

Let K be the finite algebraic extension of @
generated by the entries of o, R its ring of
integers. Then 5(GO) ¢ T(n,K) and by modifying

o as in Lemma 33 we may assume that 0(Gy) = oG o1

0
< T(n,R).

This yields a new proof of Theorem 20B:

Theorem 20 B: Polycyclic-by-finite groups are p-groups

Proof: Apply Prop. 31 and Theorem 50.
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2. Orbit separation

We now "axiomatize" the conclusions of Chapter IV,
Section 2 and extend the results for H-actions on f£.3.
abelian groups given there to H-actions on f.g. nilpotent

groups.

Note: When H acts on a group A, we now write A multiplicatively,

whether or not it is abelian.

Def. Let H and A be groups which satisfy the following
condition: if H acts on A and X,y € A are such that y € H-x,
then there is an m € N such that y # h-x mod A" for all h € H.

Then we will say that A separates orbits for H.

We will say that a class C of groups separates orbits for a

class ® of groups if each C € C separates orbits for each D € &£.

In this new terminology Theorem 37 says: £.g. abelian groups

separate orbits for abelian-by-finite groups.

It is clear that the proof of Theorem 37 yields:

Prop. 51: H a subgroup of finite index in G. If a group
A separates orbits for H then it separates orbits for G.
The main reason for introducing "orbit separation” was

to show that the following ''group action'" analogue of Theorem



37
45 can be proved. First we need a Lemma on finitely

generated nilpotent groups.

Lemma 52: M a f.g. nilpotent group, x € M.
My = gpylx}, M = gpMO{x3, - - My = epy fxl

Then Mr = gp{x} for some r.

Proof: M

o = 8Pyi{x} < gp{x,M'} = gprx, vy, M}

M, = gpMO{x? < gp(x,My} < gpix,y,M]

M, = gpy 1{x} < 8p{x, v, Ml
l-

M_ = gp{x} for r + 1 = class of M.

Theorem 53: Let C be a class of groups satisfying:
(1) C is closed under the formation of subgroups.
(2) f.g. abelian groups separate orbits for C.

Then f.g. nilpotent groups separate orbits for C.

Proof: éuppose the theorem is false. Then we can find:

(1) Agroup G € ¢C

(2) A fg nilpotent groupNacted on bv G,

(3) =x,y € N such that y ¢ G-x but there is no integer
m such that y # h-x mod N* for all h € G.

(*) Let us factor N by a maximal N-G-subgroup K (normal

G-invariant) such that y # h:x mod K for all h € G.
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Then G acts on N/K which also satisfies (1) - (3) above.
Hence, by replacing N with N/K we may assume that N has no

N-G-subgroup K # 1 such that y # h.x mod K for all h € G.

Note that N is infinite and so ZN must contain an element

of infinite order (Prop 5).

In particular, ZN # 1, so y = ho-x mod ZN for some ho €G
since ZN is an N-G-subgroup of N. By replacing x by ho'x we

may thus assume that y = xv where v € ZN.

Let H= {h € G: x-l(h‘x) € ZN}. H is a subgroup of G.

Claim: there isno m € N such that y # h-x mod N® for all
h € H.
For suppose there is an m € N such that y # h-x mod N
for all h € H. Then y # h'x mod(ZN)m for all h € G, since:
h €G-H=y=xv / h-x mod ZN
h €i=>y # h'x mod N,
Since (ZN)[n # 1 and is an N-G invariant subgroup of N, this

is a.:contradiction.

there is no m € N such that y # h-x mod N" for all h € H.

Thus H acting on N satisfies (1)-(3) and by the argument of (%)
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we may assume that there is no N-H subgroup K # 1 of N

such that y # h°x mod K for all h € H.

Ify¢ &Py y{x} = N-H subgroup generated by x we easily
b

obtain a contradiction, whether or not x = 1,

y € gpy xix} = N,

Claim: there is no m € N such that y / h-x mod Ng for all

h € H.

For suppose there is such an m. Since N is nilpotent
there is an integer a € N such that if t € N and tt € N0
for some r # 0 (i.e. t € IN(NO) - isolator of Nb in N) .
then t? € NO, and an integer b € F such that each t € N is

the ma-th power of an element of N(Prop. 6).

y * h-x mod N2 L v lh.x) = t™ for some t € N

» y'l(h-X) = (t®)™ for t? € Ny

= y ¢ h-x mod Ng.

there is no m ¢ N such that y # h-x mod Ng for all h € H.

H acting on NO satisfies (1) - (3); moreover x-l(h-x) € ZN“\N0

for all h € H.

Claim: Ny = gpN,H{x} = gpN{x}-(ZN N NO)
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Let t € gpy H{x] = Ny. Then for some py,...,P
b
h,,...,h_ € H:
1’ r -1 il _1 il
t = [py(hy'x)p" ]  .oennnl o (h_-x)p_"]

-1 ~1.zx1 - -1
= [pyxx (h1~X)p1 ) (o xx 1(hr°X)or 3*1

topxeiH L. (o 0, "I o) 7Lt R, ) 7

€ gpN{x} - (ZN N NO)

Nb = gpyfx} - (2N N Ny)

Similarly, let N1 = gPNO,H{X}’ Né = gle’H{x}, ...Ni+1 = gpNi H{x}.

By the preceding arguments we can conclude that :

(A) H acting on Ni satisfies (1)-(3) for all 1i.

(B) N.pp = gpNi,H{x} = gpNi' (ZN N Ni+1) for all i.

The inclusions N =2 NO 2 Nl 2 ..., induce inclusions

N/ZN = NbﬂZN N N& = NlﬁZN n Nf =2 ..

Let M = N/ZN, M, = N, /2N n N).

Then M, = gpM{x}, M, = gpmofx} S gpy; {x1.

We can now apply Lemma 52 to M. It follows that Mr = gp(x}

for some r.
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N. = gp{x, 2N N Nr} = gp{x,2N_} since M_ = N_[ZNON).

N is abelian since it is singly generated over its center.
r

But H acting on Ni satisfies (1) - (3).
i.e. (1) HEeC
(2) H acts on Ni, a f.g. abelian group.
(3} x,y € N_ and y £ H-x but there is no

integer m such that y # h-x mod N?

for all h € H.
This is a contradiction. QED

Theorem 54: Finitely generated nilpotent groups separate

orbits for abelian-by-finite groups.

Proof: Theorem 37 plus Theorem 53.






