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[.. INTRODUCTION

Early in the study of statistical mechanics, one is introduced
to the consequences of the Pauli exclusion principle as applied to the
spin-rotational partition function of homonuclear diatomic molecules.
After demonstrating how the partition function can be broken into a
sum over even and a sum over odd rotational levels with proper spin
weights, the example of ortho and para hydrogen is usually given.
From a study of this system, inferences are drawn which help us to
convince ourselves that we may obtain sufficiently accurate spin-
rotational p. f. (partition functions) in most all instances by merely
dividing the sum over all states by the so-called symmetry number
associated with the molecule. In order to see how good this sort of
corrected Boltzmann counting actually is, we deal with the analogous
effects of the exclusion principle upon the symmetric top p.f. (A sym-
metric top molecule has at least two equal moments of inertia, )
Also, since a symmetric top is capable of possessing much symmetry,
it presents a more general problem than that of the simple linear
molecule which can have only two elements of rotational symmetry.

We have chosen the symnﬁetric top as opposed to the more gener-
al asymmetric top because of the existence of a relatively simple

general expression for the energy levels of the symmetric top, where-



as no such explicit expression exists for the asymmetric top. Although
the asymmetric top can be treated, it is not easily amenable to reveal-
ing analytic manipulations which we shall find so important in charac-
terizing the general behavior of the pértition function.

The fomat is essentially this, First, a formalism is develop-
ed such that an expression for the sum over allowed states is readily
set up from the cycle structures of the operations of the rotational
symmetry group associated with the molecule under question. This
turns out to be a series good for calculations at low temperatures.
Secondly, high temperature forms are developed from which we are
able to see how fast the corrections to the "symmetry number approx-
imation” diminishes with increased temperature and/or size of the
molecule. A number of physical interpretations are drawn which give
qualitative information concerning the behavior of what we label as
statistical effects.

The most important points of interest are:

1. We may regard the spin-rotational partition function as
consisting of contributions from each element of the molecule's
rotational group.

2. The contributicn of the identity element increases with
temperature like ¥ . 2‘ is 3/2 for all symmetric tops except for

the limiting case of the linear molecule where it is 2/2,



3. Contributions from the other symmetry elements decrease
with increase in temperature like T4 e?T | A is some small positive
number and A is a function of the moment of inertia about the axis of
rotation associated with each group element.

The contribution from the identity element dominates at high
temperatures. It turns out to be the "corrected Boltzmann' partition

function.

Nomenclature. A partition function involving identical particles

can be divided into its corrected Boltzmann part plus corrections to
this approximation. As will become clear in the development, we
choose to call these two parts the direct p.f. (Z;) and the exchange p. f.

(Z oy, ) respectively.

(1.1)
Z = Zd—f- Zex
- ‘BEn (1.2)
Zd " h ; an,s C
(1.3)

The symmetry number is denoted by h. The sum is over all energy
levels and g,  is the degeneracy of the nth energy level including

nuclear spin but disregarding the exclusion principle. Quite arbi-



trarily, we call non-zero Zex's quantum statistical effects, and the
difference between the classical p.f. and the direct p.f. we call quan-
tum effects. Zex originates from our inability to distinguish between

identical particles. But, this indistinguishability is a consequence of

. L 1
the uncertainty principle, a quantum effect.



II. FORMULATION OF THE LOW TEMPERATURE EXPANSIONS,

The Exclusion Principle and Group Theory. In what follows,

a well known relationship from group theory is used to set up the
spin-rotational partition function. Wilson has described in detail the
group theoretical machinery necessary for finding the true degeneracy
of an energy level when the transformation properties of its set of
degenerate eigenfunctions are known, . He gives the weights of the rota-
tional leveis of various types of molecules. We employ his method to
procure explicit expressions for the weights of symmetric top energy
levels and use these weights to construct the spin-rotational p. f.

The canonical partition function is of the form:

{2.1)
7 = 7w eP

where the sum is over all energy levels of the system. E_ isthe
energy of the nth energy level and &, is the number of linearly in-

pendent solutions of the proper symmetry satisfying Schrddingers

equation:

Hy, = B ¥



Since H, the Hamiltonian, is a linear differential operator, any linear
combination of the degenerate Z//,, 's is also a solution. The number

of such independent solutions corresponding to a given eigenvalue En

is the degeneracy of the eigenvalue. When we include the nuclear spin
degeneracy, we call this number gn’ o However, the Pauli exclusion
principle states that only those combinations which are either symmetric
or antisymmetric with respect to all pairwise interchanges of identical
particles are acceptable. If a pairwise interchange involves Bose
particles (those with integer spins), the wavefunction must be symmetric
and if it involves Fermi particles (those with half-integer spins), it

must be antisymmetric. Therefore, with this extra restriction, nature

requires that ), s 8, &
)

We now turn to obtaining an expression fore, in terms of the trans-
formation properties of the set of gn < degenerate eigenfunctions. OQur

model, a rigid rotor, will be any molecule which can be satisfactorily

described by the wavefunction:

(2.2)

U 7S /7 R %

That is, the wavefunction is a product of electronic, vibrational, rota-

tional, nuclear spin and translational wavefunctions, This is known

to describe moderately well the behavior of many small polyatomic

molecules. It is fairly straight forward to include free internal rotation,



but because this complicates the presentation without presenting
anything essentially new, we omit this category of molecules.

Associated with a molecule is its rotational group. This is
the group consisting of symmetry operations which are equivalent to
rotations. This will usually be a subgroup of the full point group of
the molecule.

A given eigenvalue will in general be degenerate. This set of
degenerate eigenfunctions forms a basis for a reducible representa-
tion of the rotational group of the molecule, That is, they serve as
a set of functions from which we may construct a matrix representa-
tion for each of the elements of our group. From group theory we
know that the number of independent linear combinations we can form

which are a basis for an irreducible representation, A , is given by:3
(2.3)

(2)
w(h) = —l"l— ;, [’\/) X/O @/O R

where h is the order of the group, h/0 is the number of elements in
the © -th class, the ©- sum is over all classes, 7(/?) is the character
of the/o -th class of the A -th irreducible representation, and @/0 is
the trace of the matrix representation of the transformation properties
of our set of degenerate éigenfunctions. So, without actually con-

structing the wavefunctions, equation (2.3) tells us the number of

linearly independent eigenfunctions having a specified symmetry which



can be constructed by taking linear combinations of the unsymmetrized
eigenfunctions. For our purposes A will be either the symmetric or
antisymmetric irreducible representation as is dictated by the exclusion
principle.

Eigenfunctions in the form of equation (2.2) will be a basis for a
direct product representation. Since the trace of a direct product

representation is the product of the traces of the separate representa-

tions, we can write:

(2.4)

(2)
w =+ ; f/\/, X/J Doe Do @ojr Dos Dy

where e, v, r,s, and t have the same meaning as in (2. 2). The sub-
script n is included to remind us that we shall now be interested in the
number of times the irreducible representation A occurs in the
reducible representation provided by the degenerate eigenfunctions of
the nth energy level.

Now, let us examine the implications of the Pauli exclusion principle.
Our product wavefunction must be symmetric or antisymmetric with
respect to the interchange of any pair of identical nuclei according to
whether the pair consists of bosons or fermions respectively. This tells
us that the matrix representing the transformation properties of the
properly symmetrized set of degenerate eigenfunctions is one dimen-

sional with a trace of either plus or minus one. That is, the exclusion



principle determines )C/?) of equations (2.3) and (2.4). For a

Bose system it is always +1. To find its value for a molecule which
contains Fermi nuclei, we examine an operation of the/o th class., If
the operation involves an even number of pairwise interchanges of

Fermi particles, it equals +1, and if an odd number, it equals -1.

)

In the next paragraph we shall describe a quick way to determine X/(j
A single pairwise interchange is called a transposition. Any

permutation can be achieved by a series of transpositions, Though
the number of transpositions one can use to realize a given permuta-
tion is not unique, it can be demonstrated that the parity of this number
is always the same. This is necessary if the exclusion principle is to
be unambiguous. Suppose we have N identical particles and we permute
these particles by applying the permutation operator P as is partially

specified by its cycle structure:

QA

A a,
P = fQ-.alal,,,_}\JQN = tl tg_ tN

That is, the permutation involves a, independent cycles of length |,

8y of length 2, etc. The first expression is standard notation for cycle
structures. The second is an alternate notation in which we have in-
troduced the quantity t to denote the type of nuclei involved in the cycle.
One can readily show that the parity of this permutation is even if

N - Za; is even and it is odd if N - ):Q'L is odd. Hereafter, we shall
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refer to Z Q; as C(p). It is the total number of cycles involved
l
in a permutation and is a characteristic of each class. Now, we can
write for the properly symmetrized eigenfunctions,
(2.5)

Byt ) = (0 Sy (s )

where C(/o, f) is the total number of cycles of the Fermi particles

and Nf is the total number of Fermi particles. Therefore,

(2.6)
~, (7) Ng- C(/o){)
X

o = )
This formula is independent of the presence of Bose particles be-
cause interchanges involving these must always be symmetric.

Transformation Properties of the Sets of Degenerate Eigenfunctions.

We now look for the traces of the various terms of our product
representation as is required by equation (2. 4),

A. Spin Functions. Turning first to the spin functions, we note

that the trace is the number of functions which remain invariant
under a given permutation of the labels of the particles. There are

N
(28, + 1) A degenerate spin functions for a collection of N

A auclei
of type A with spin S - We now demonstrate that the trace for a
. D) a NA
class e with cycle structure Al -Az "'An of this (ZSA+ 1)
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dimensional reducible representation is given by

(2.7)

Clp, A)
Q/GJS = (25A+/) /O

C(/O,A), which we mentioned previously, is the total number of
cycles involved in any one permutation of the /0 th class. Another
way of looking at C(/@,A) is that it is the number of parts of the
partitioning induced by any of the perimutations of the class when it
operates on the particles. Reasoning as follows, one can see why
relation (2.7) is true. If a spin function is to remain invariant
under a permutation, each particle involved in a cycle must have
the same spin function, Since there is a choice of (2sA+ 1)
functions for each cycle, the total number of poussible choices of
invariant functions is (25A+ 1) raised to the power of the number of
independent cycles. ‘Therefore, the trace of spin function transfor-
mation matrix is given by the above relation,

The development so far applies only to spin functions of

molecules with one set of identical nuclei. When there is more than

one set, we have

ZDS/ - %,A %5

9



where Y, , is the spin function of nuclei of type A and so on. In
carrying through the analysis, we would use the direct product of
the various spin functions. Therefore, we see that the only change

in our previous result is that we now use a product over all types of

nuclei:

géo)s - Z-/’(&SL +/)C(/O) ) (2. 8)

As an example, ¢ s for a permutation of the structure:

7
A B B
v/ x Q} ( > CC = A31B22Cll
A A B B
~_A

. 1 2 1

is(2s, + 1) (2s_+ )*(2s + )]

(2s, + 1) ( gt c )
In our model the permutations of the nuclei are those induced

by rotations.

B. Rigid Rotor Eigenfunctions and Eigenvalues. We now

outline some quantum mechanical results concerning the rotation

of certain rigid rotors. First, the rotational eigenvalues are given,
then their degeneracies, after which, the traces of the matrix
representation provided by the degenerate eigenfunctions are listed.

For a discussion of the quantum mechanical rigid rotor we refer

12
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our readers to references (2) and (4).

a. Linear Molecules

) - K _
E, = E-I-(jw)z £=o0,1,a,..

BE,= o(L+1)L g = Txa/aIKT

8= //,fT , ©i is Planck's constant divided by am , and I is the

moment of inertia.

(2.) Each energy level is (24 + 1) degenerate.
3.) @Ol = (24 +1) for the identity element.
@/OJ,Z: -(24+ 1) for the C, element.

b. Spherical Tops T
7’-1&
(1.) Eﬂ ot E(Z—H)/e ,é: o 1,a,. ..

BE, = ald+)L 0= KL
(2.) Eachenergy level is (20 + l)2 degenerate.

3.) @01: (27 + l)2 for the identity element.

+ L

g Cos X
@Al (2£+/) n;/ﬁ 03 /o}'(

‘ X
n A
Sin an

for classes involving a rotation by O(/O radians.
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c. Symmetric Tops

@ - # R [y, a
Egw = 37 (U404 4 I(—I—c——I—)/«

L=0,1a,... ko= =d =(L-1) v
ﬁEjm = g({l+)L + (g - T)k*

I is one of the two equal moments of inertia, and IC is the moment

of inertia about the axis coincident with the principle symmetry

axis.

o= R/alnT o = B ar T
(2.) The degeneracy is 2(2£ + 1) when K # Oand (2f+ 1) whenK = 0.
(3.) Classes designated by /O involving rotations by the angle Ao
about the principle axis of symmetry have:
@/%K = 2(24+ 1)cos(cr,K) when K # 0.
= (24+1)whenK = 0.
On the other hand, those classes designated by the index /o’ in-

volving C2 rotations about an axis perpendicular to the principle axis

of symmetry have:
@p),l)r\: 0 when K # 0.
= (—1)1 (2£+1) whenK = 0,

C. The Other Eigenfunctions

Since the translational eigenfunction depends upon the center of

mass coordinates, rotations of the molecule always leave it invariant,
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This part of the wavefunction can therefore be ignored.

The electronic eigenfunctions must be in general determined
experimentally. Since for most molecules, only the ground state is
important in calculations at ordinary temperatures, we need only
consider this'state. The ground state of most molecules is totally
symmetric,

The vibrational eigenfunction transformation properties for
other than the ground and first excited states are complicated.

In the ground state it is totally symmetric. The fundamentals are

of the same symmetry as the normal coordinate of the excited mode.
As with the electronic wavefunction, we will be primarily interested
in the temperature range such that the molecule will be in its ground

vibrational state.

Construction of the Spin Rotational Partition Functions.

Finally, we have enough information on hand to use equation (2. 4).
We only consider molecules in their ground electronic-vibration state

and therefore presuppose that:

With this in mind, equation (2. 4) can be written as:
(2.9)

Y / (1)
Wﬁzz - A Z;//Z/J%O @,5 @ﬁn



2) . , . N
Again, Co,  isthe number of independent linear combinations we
can form of the proper symmetry for each energy, therefore, it
is the weight or true degeneracy of the nth level.

The partition function becomes:

-G E 2.10
7 = L o erh (210
n
Using (2. 9) for w,(ﬁand interchanging the order of summation gives

L, Lo

, N

(2.11)
e"ﬁfn.

The index n runs over all energy levels.

The identity element is in a class by itself. For this class one

gets: ) NN
Ay = 0)F F = 4

T C(z, 1
@,s = é/(alsz;w) L)

@r " = 8., the total number of rotational basis functions,

Segregation of the identity term in equation (2. 11) gives

s (2.12)
—~ I
/= ”‘g H(&Sﬁ/) .

L

Z 9, e—BEn

+'é‘ Zh/)?(/?) @05 e

PET

= [, + 7

ex

16
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Zg can be said to have arisen from the ever present identity symmetry
operation, and ZeX from the operations which actually interchange
identical particles.

Using equation (2. 11) along with the appropriate energy levels and
traces, we are now able to construct the partition functions of the linear,

spherical, and symmetric tops.

A. The Linear Molecule With a C2 Element of Rotational Symmetry,

(2.13)

4

7 = 577 s gcawf)e“““*‘”

@

] — () & ~a(f+1)4
L P U@Sﬁ,)@ £ ZZ;O(-/) (ageny € T

N¢ is the total number of Fermi nuclei. C(CZ’ i) is the rather clumsy
notation for the number of cycles involving the type i nuclei induced by

the CZ rotation, C(C2, f) is the analogous count of al) cycles involving

Fermi nuclei. C(l, i) reduces to nothing more than the total number of

nuclei of type i.

B. The Spherical Top.

(2. 14)
Z= g asenf™ [ ogey et

Z‘ L’ ()" C(ﬁ)//( 5.+ C(PL)Z@I“)SM(JZ,L/)J é”ﬂﬂu

Sin X
/o¢1 =
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O(/o is the angle of rotation of the/o th class and h/o is the number
of elements in that class. Here we point out that it is not necessary
to sum over the classes. We could have summed over all symmetry

elements instead of over the classes.

C. The General Symmetric Top

(2.15)

—a (el 2 ~(g~) K*
/= ;1 //(&sL 1) )Z(JZ +1)E Z£€
¢ K= —

¢ -o(g+)p _ 4 (g @)}
Z h, o BF)//(as s )Z< agr)@ Z,cas(d )% i
h o3z P f=-k

N-Clo, ¢ —a(L+1) L
th Z hg C1) /0{)// (xs:#1) 2% )Z ) (M*’) e
/0

As previously mentioned, /Zo, denotes the sum over classes involving

rotations about the principle axis and Z denotes the sum over classes
Ve

involving C2 rotations perpendicular to the principle axis.

Specific Examples

A number of spin-rotational p.f. will now be constructed. We
have seen that the p.f. can be written down from inspection of the

cycle structure of the symmetry elements.
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Example (1), CH,, A Spherical Top.

The carbon nucleus is a boson and the hydrogen nucleus is a fermion.

Nf , the number of fermions,is four.

2
T I 4C3 4(33 302
Cycle Structure C lH 4 c lu lH ! C 1H lH L C lH 2
1 1 3 1 3 2
Clp,H) 4 2 2 2
C(p,C) 1 1 ] 1
C(0,1) 4 2 2 2
Using equation (2. 14) we get
2 T+ L

L= é(&5c+/)(&5’{+,)q’ ﬁ;}(&hl) €

o0
2 sin(ag+1)™ -~olL+1)L
+ 8 (ag+1)
B (as +1)as, +1) 5;0 Sin T, c

~g (4+1)4

. 3 Vi
+-2 (as +1(2s, + oa ;:OC—/) (ag+1)C

Because all of the permutations are even, we get the same result for CD4.
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Example (2), (38 H8, Cubane,_iSpherical Top.

The number of fermions (Nf) is 8.

/

P R

0 I 8(33 6()2 6C4 3C2
Cycle Structure C18H18 C32C12H32H12 CZ4H24 (34‘2H42 C24H24
Clp, H) 8 4 4 2 4
C(p,C) 8 4 4 2 4
o, ) 8 4 4 2 4
(-1 LPf) 1 1 1 1 1

Equation (2. 14) gives:
8 8 v o (L+1) 4
— +
L= 2 @scr)as,+0)° ) (age)*e
2:0

: y 3 S¢ g
P (gt s, n )" ) (ae) LRGL) Ty sotig
L=o Stn /3

+ —i%(ozscwﬁcozsﬁwﬁ 1{):' (—/)E(auj/) e_aw/m

+jé (JSC*‘/)OZCJLSH+I)& Z (&,@+/)5W e ald+)4
4 f=0 S:n 7%1.
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Example ) BSF() ,» A Symmetric Top.

This is a generalized cyclopropane-like system. We let

B be a boson and F a fermion. Also, we introduce the notation:

Oy = TWUL+)L + (g -0T)K?
D I C c ? 3C
3 3 3
6 3 25 1 2, 1| p3glyl
Cycle Structure Fy Bl Fs 53 F, B3 5 51 By
c(/o,p) 6 2 2 3
C(/O,B) 3 1 1 2
C(/o’f) 6 2 2 3
6~Clpf)

(__/) P ] 1 1 -1

From equation (2. 15) we get:

0 7 _
7 - —é(gLSFH)é(&sBHfEZ__ Zj(owc/)e s
=0 K:—_—

° g e
+ = &5;:-7‘-/)&(&5‘ 1) af+) Cos REL o L
7 ot ) L L 3

3 oL - — i /Z
% (a5 ) Csg ) ) (W s T

A=0

ol
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Example (4) Benzene CeHg, A Symmetric Top.

Carbon nuclei have zero spin and are bosons. This allows us to

ignore them. H can be a hydrogen nucleus or any fermion.

Dg I 2C¢ 2C3 Co 3C 3Coy
Cycle Structure |H  He!  Hi?  Hy® | m2H,Y w3
C( 0, H) 6 1 2 3 4 3
Clo,9) 6 1 2 3 i3
(e el 11 1 -1 1 -1

Using equation (2.15) and the notation introduced in the last example,

we obtain:
A &z £ - YKy
7 = EHas,) L L (ad+1) €
f=0 =-g
2 / 50 7 OYK,Q,
-2 (a1 Ll (Qf+/)cos-f‘-6
Ja ALzo K=-¢
= J Kﬂ
(,15 +/)‘1 )2 £1)Cos i’ﬂf e
L=0 kK= /Z
£ —(T
== (25,41 ) ) 7 ) (20+7) (-1 ) aes
/01 H ,Z o ﬁ\__._/(‘
e —~a(L+1) L
+73 (QSHH)L/IZ (=1)" (ol£+/) €
=0
—g(L+1) 0

— .%\(015/;7*/)3 ZZ:O<”/)/€(;Z/€%/) c



If H were a boson, the only change is that all of the signs in front
of the above six terms would be postive.

Example (5) A Hypothetical Linear Molecule.

We suppose that A and C are fermions and that B is a boson. We

give this example only because it presents some generality.

Gy | Co

Cycle Structure A'B2C)? A'BylC,
Clo ,A) 1 1
C(0,B) 2 1
C(0,C) 2 1
(_1)3‘(_‘,(/0,{:) 1 -1

From equation (2. 13) we get;

- . —a (L)L
/o zas,r)@sgr)Nas D) (a4 @
£=0
g (L+1)L

_i (25,+0) (25,+0)(as. +1)" ] (—/)/C(&£+/> e

g=o

23
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III. A CLOSER LOOK AT THE PARTITION FUNCTION

The Partition Function as a Weighted Sum Over "Symmetry

Functions. " The p.f. of the general symmetric top (see equation

(2.15)) can be written as follows:

= L 3.1
L= + L A, Slet) (3.
o
|
+h LAy Sme)
o
The sum over & is over all symmetry elements about the principle
axis of symmetry, and the sum over o is over those C2 rotations
about an axis perpendicular to this axis. The coefficient A, is given

by: (3.2)

Ag = (1) HET) s, )0

We remind ourselves of the notation. Nf - C(, f) is the number of
Fermi nuclei in the molecule less the total number of cycles con-
sisting of Fermi nuclei induced by the rotation of (X radians. Also,
C(c¢, 1) is the number of cycles involving the i-th type of nucleus of
spin 5. Next, we have set:
(3.3)
~g(L+1) L

S L _tok?
St ) = Z.(&EH-)@ Z, e CoS(AK) |
£=O k=-A
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with
%
t = = l
or _ _l_ _
t = I, 1

In tﬁe special case of the spherical top, Z becdmes
3.4)

Z = —i—{ ;_,AQSCOQOJ

the sum now being over all symmetry elements. Specifically, we
have

w

S, o) = Z(g[ﬂ)&bﬂ(&fﬂ)% e—U(ﬁH)Q

) o
Z:O~ SLVL—;_Z-:

We note that for actual computations, we need only concern
ourselves with the function S(c¢,t). This function will be of such
major importance in the ensuing pages that we give it the name
"symmetry function.' It is a function associated with each symmetry
element of the molecule. Implicit in S(c¢, t) are the independent
parameters T, the temperature, and I, one of the two equal moments
of inertia. However, it will be convenient to regard them as constants,

To vary t then, we vary IC, the parallel moment of inertia.
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If the usual high temperature approximation of setting the
whole partition function equal to Zd is to be correct, the S(¢x¢,t) for
& #0 must be small. Some of the interesting properties of the sym-
metry functions which lead to this and other results will now be

discussed.

Properties of the Symmetry Function. S(O(,t) in the low temper -

ature form (T's 7 about 1), is

(3.3)
@ o4+l 4 _toK*

Se,t) = ) ()@ e cos(aK).
d=0 k=-A

S(C¢, t), as one can readily verify, satisfies the heat equation,

a (3.6)
5 -
04

Q
\Y)

S

|
|

|
L T

Q
Q
o+

S plays the role of temperature, X a coordinate, and t the time.

S(&, t) is a periodic and even function of &, that is:

Sl ann )= Sl t)

S(=oc,t) = Sla, t)

The above properties qualify the following interpretation of

S(o¢, t). Given some initial temperature distribution about a ring;
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the distribution's dependence on time and position is given by S(C(, t),

the symmetry function. The time variable is

Time being equal to zero corresponds to a spherical top (I = IC).
Time being negative corresponds to an oblate top (I < IC). Time
being positive corresponds to a prolate top (I> IC). Then, the
entire progression of the symmetry function in going from an
extreme oblate top (t = -3), passing through the spherical top

(t = 0), and going all the way to the linear molecule (t = @ ) is in
complete analogy with the redistribution of heat about a ring from an
initial temperature distribution of S(x, -3) (see fig. 1 and fig. 2).
S(cx, -3) is the symmetry function of a flat molecule. Times

less than -3 are unphysical since IC can never be greater than

twice I. The analogy with the heat flow problem gives us an intuitive
feel for the symmetry functions. Having information about S(g, t)
for some particular t, we can envision its form at another t by refer-

ring to the familiar way heat redistributes itself,

Consequences of the Heat Analogy. S(c¢,t), as a consequence

of satisfying the heat equation, has a number of interesting properties.

First, by expanding it in a Taylor series about some time t and

using;



Flat Molecule Spherical Top Linear Molecule

FIG. 1 An illustration of the time progression analogy.
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'Sty = gn 9 Sut,)

a_én tzte aa?.h
gives

(3.7)
S(QH)—Z@“ a = St
(¢-t)o D’
Stet, t-1,) = €7 ey

where

Also, it can be shown that when t is greater than t_, the

above operation can be expressed as the integral: (See appendix 1)

(3.8)

R _EY
Slet-t,) = [4%0(?5—1‘(,)]7[5(0“ g,1)C % ye
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When t is less than t, , it is given by
(3.9)
tE _EY
S [t-t) = [47a t-t| ]—i]S(O(ﬂ‘g}fo) @ #lt-t dE

Given a distribution at the time t, , we can find its distribu-
tion at any other time by the above relations. These time progression
or regression relations are readily verified by using the low tempera-
ture form of S(c¢, t) given by equation (3. 3).

Using the heat flow analogy, we visualize that as t tends
toward infinity, the heat should flow out evenly and the distribution
will become linear. That is, S(o¢, 0 ) is independent of oC. In regard
to our molecule, we are then dealing with a linear molecule whose
only rotational symmetry element about the principle axis is the
identity. So, we use S(&,® ) as S(O ,). Now, referring back to
the heat flow problem, we know that heat is conserved throughout

the heat flow process. This implies that at any time t,

+7C

js (CK) £) dcoy =  (constant)-(total heat),
7T

or using the fact that S( o, @ ) is linear,

(3.10)

[S@erdo = 27 Sco0).



This implies that the area under a plot of S(cx, t) versus ¢ is a

constant for all t's. (see fig. 2).
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FIG. 2 A plot of S(c¢,t) at various times for o= 0. 7,
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IV. HIGH TEMPERATURE EXPANSIONS.

-

At temperatures high enough to produce moderately low values
for the parameters J and O, (0.1 and downward), the low temper - .
ature form of S((x,t) is virtually useless for computation. One quickly
finds S(C(, t), when & # O , to be a small number; however, it is
difficult to tell how small without considerable labor. Also, its func-

tional dependence upon the parameters involved is completely buried,.

The Approach Taken. Our approach to obtaining the high

temperature expansion of S((, t) is basically this. Relations 3.7),
(3.8), and (3.9), give S(Cx,t) in terms of (X, 0), the spherical top
symmetry function. S$(cx,0) is closely related to one of the theta
functions. The theta functions have two forms. One of these turns
out to be a nice expansion of the spherical top symmetry function
at high temperatures. Having on hand this one high temperature
expression, we get the others by our time progression and regres-

sion relationships.

Summary of the High Temperature Results. Since the mathe-

matics becomes rather involved in the following pages, we give the
first term of the high temperature expansion of S(Cy,t) now. To show

its explicit dependence upon the varibles ¢ and J., We write:

Sgt) = Sl,o:a) .
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a,a>0

S, T AL

o

a - ==
(Fe)ecc & e ™ [+

[

)
123 ag

60(,7[—_ lif &= 7 and 5%7[ = 0if o¢# 7. However, in the
immediate neighborhood of /=7 and ¢ =20, (as would be the case
for a flat molecule with a C, element of symmetry about the prin-

ciple axis), we get:

i 3, 7=
_ 9.0 >0 V[ \* (1R o v
\S(/L}CF:&U’C) ~ L€ (—é—%) (—6:) e 7"

The exchange effects then vanish like T4 e ! with increase
in temperature. The exponential term easily dominates the quali-
tative behavior. In all instances we can interpret the combined &
and moment of inertia effects to mean that the smaller the distance
we must move the nuclei to interchange identical particles, the greater
will be the contribution of this symmetry function to the over-all
partition function. This is epitomized by the domination of the
contribution from the identity element.

Fig. 3 shows how a symmetry function varies with & at a

moderately high temperature, As the temperature gets higher, we
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FIG. 3 A plot of S(¢x, -3) for ¢ = 0.1.

180
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get something similar to a Dirac delta function centered at ¢ equal to

zero.
The Spherical Top. Since S(¢¢, 0) plays such an important role

in determining the high temperature behavior of S(¢¢, t), we give it

special attention. As we saw previously, the spherical top function is:

(4.1)
o - o3 - (Q‘H)»Z
Sin(al+1)Z g
o) = [ ) SRBLUE
It happens that 19‘2, a theta function, is closely related to S(Cx, 0). 0
(4.2)
o Ly
W(E,e”) = 2 ). cos(age)s e—g(£+l)
ava? l=0 *
Comparison of (4. 2) with (4.1) gives
—a
Sl o) = -+ 1 Q__z%(%)e )
SN @Q_L
ES <2

Fortunately, Jacobi's transformation of theta functions gives us an

alternate form for 192.
(4.3)

95. g O_ o
+a (-1 h 2
Z_ )" e cos =



Upon regrouping of terms, the above can be shown to be equivalent

to
+ @ (ol +an T /L)&
4, 4)
- —_ o LG (
G (g, e7) = (Z)* L e)'e .
S( ¢, 0) is then given by
(4.5)
S(ec o)
& @ 'Y'Ll?(—’_
% 7| -% %’ " jnTa hnadég‘
i\t L . 2= Cos L 7 S ]
€ (U’)Ue 4—1(/)[& sins
N= -
or using equation (4. 4), we have
(4.6)

S(O()o) =

=5
- tanz)

L

SinXrg

Taking the limit of (4.5) or (4.6) as & goes to zero, we obtain

(4.7)

S(00) = e%[zz)’/% Z e T |- “(;T“&] ,
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We now have extremely good converging series for all terms
which go into the spherical top spin-rotational p.f. At moderately
low g 's, only the first terms need be kept. (It should be mentioned
here that the alternate forms for S(0, 0) and S(17, 0) have been used

by others. 7 8)

Z4 is the portion of the whole partition function involving

the identity element.

— C(z,i)
Zd = 7;% S<O)O) /((Q\Sl“f/)

We have

(4. 8)
_(am)?
7(15 /)C(I ;) ( ) [l'f'@/(O” e sL—c(r ]

However, if o(# 0, we get

o (4.9)
>0 / o /z X /2
7 -’—%O’"
S(d 0) o (O‘ e 5(,)’20(/&<’+50(’7Z) .

As explained previously, & _ is a kronecker delta between o and T .

a,n

S(o¢,0), for oC+ 0, is the symmetry function associated with

Zex‘ Therefore, Zeyx vanishes powerfully with increase in temperature

(decrease in 0" ) while Zd increases. Z4 is a good approximation to
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the entire p.f. at all, but extremely low temperatures. The smaller
the interchange angle, the larger the contribution of the corresponding
S(&, 0) to the total p.f. Table 1 gives the numerical value of S(¢x, 0)
at various values of & with ¢ equal to 0.1. It indicates the rapidity
with which the exchange effects fall off. The temperature at which @
equals 0.1 for methane corresponds to the modest temperature of only
about 77° Kelvin.

The Euler-Maclaurin summation formula for Zd gives the first
term of equation (4.9). One might venture to say that the Euler-
Maclaurin expression picks up the contribution from rotations by
O-radians. Corrections to this come from rotations by full multiples
of 270 radians. With this qualitative picture of the origin of the
various terfns, it is easy to see that Zex which arises from rotations
of 1 or less, will vanish less rapidly than the corrections to the
Euler-Maclaurin approximation for Zd'

The Symmetric Top. Letting t, equal zero in equation (3.7)

yields:

2° (4.10)
S(O(,t) - @waa“ S(O(,O)

We now proceed to perform the indicated operation using S(¢¢, 0) in

its high temperature form in hopes of obtaining a high temperature



Table I.

S(x, 0) vs. X

for o= 0.1

X S(a¢, 0)

0 57. 468 822 445
U 12.615 830 545
A 00.133 687 398
37y, 00. 000 068 765

00. 000 000 003
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expansion of S(, t).

In what follows we do many manipulations which we do not
attempt to rigorously justify. However, since we have on hand the
low temperature expansions to check our results, we feel partially
justified in assuming that if the results agree, we have at least
developed an asymptotic expansion of the symmetry functions.

Equation (4. 60) for S(o¢, 0) and the above relation gives

(4.11)
Jle 1) =
v 2 (o razk)’
5 Z €+t0- Derann)? (AFazh ) /o 6 —7T
e Stn(l+amh)/y
We used

B: 6074.(%)?2_5:

Let i = (0( + 2 77 i) and concentrate for the time being
on one term of the above. Then, it is our task to evaluate an ex-

pression of the type:

(4.12)



@ n an 3 —Jg
- Z (Jﬁoﬂ!) L (;‘;)DJ Jhesca I " c %o
n=o J:O
n _ /@n
D - 8(}/”

Using the definition of Hermite p olynomials:

e 5l
H(g)= (1) € e €

and the relation
S J
Ho (g) = Lanid!l L2 ()
27 J (SLYI),{ on C{gd an
equation (4. 13) is converted to
& @ J

~j .

LT () H, ()

OCJJ"/ Zizo

(4.13)
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