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I. Introduction:

This study is an outgrowth of a previous workl) on
superconducting wires carrying alternating currents. In
that work 1t was shown that the critical current at which
the wire entered the normal state was approximately that of
Silsbee's hypothesis. However, an e.m.f, developed across
the wire whille 1t was 1ln the superconducting state, and
integration of the V - I curve showed that there was a power
loss assoclated with this e.n.f. The shape and magnitude
of the V - I curve suggested that magnetlic hysteresis within
the superconductor was an important factor. Dr. Houston
recently suggested that flux flow may also be a factor;
however, that has not been investigated in this study.

Thils present work was started to determine whefhér
d.c. magnetization curves had sufficient hysteresis to
account for the a.c. behavior., After i1t was shown that the
d.c. hysteresls was large enough, the d.c. measurements were
continued in order to describe better the sources of this
irreversibility. 'D,c. measurements were made rather thgn
a.c. because the former offered greater precision and sensi-
tivity and better control of temperature, shape and magnetlc
field.

The three Ilmportant sources of hysteresis investigated
were: supercoolling, geometric effects, and inhomogeneities.
Supercooling refers to the existence of the normal state

when the external field is below H,(T). By occurring only



2,
for decreasing magnetic flelds or temperatures, 1t leads to
hysteresis. Multlply connected or irregularly shaped samples
have hysteresis which arises as a geometric effect and 1s
assoclated with nonuniform magnetization in the mixed or
1ntermed1a€e.state. One example 1s a bump on an ellipsold.
The third source, inhomogeneltles, refers to crystalline
Imperfections which are able to trap flux. These include
Impuritles, strains, dislocations, graln boundaries, etc.

The obJject of thls experlment was to make observations
on each source with as llttle Influence as posslble from the
other sources and to check for Inter-relations between the
sources. The behavior of these sources was then related to

(o)

such Ilmportant materlal characteristics as Tc, Hc B ! H , etc.
c

Most previous studles did not attempt to treat this widearange
of varlables, and in addition they dild not have both the

high precision and the good sensitivity for measuring the
magnetlzatlon as were used in this study. |

It 1s hoped that this experiment will help glve better

understanding of superconductivity by considering why there
/phould be any irreversible behavior. Such an understanding
‘may be quite useful for application to problems such as re-
ducing a.c. losses or describing the lrreversible behavior

of superconducting solenolds.
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II. Theory:
The magnetization of carefully prepared single crystal

elllpsoldal superconductors 1is almost a reversible function
of external field. Nevertheless, some hysteresis does occur
for all samples and it is of interest to try to determine

the source of this irreversibility. In order to differentiate
between varlous sources it 1is necessary to understand the
differing dependence of their hysteresis on external field,
temperature, material and shape.

To provide a background for the discussion of irre-
versible behavior let us first review related reversible
phenomena. As thermodynamlics will be used, 1t 1s necessary
to carefully define work, the extent of the system and other
parameters. The work term dW implles work that is done on the
external surroundings of the system. In general thls work is
represented by the product of an intensive parameter
(generalized force such as p?essure) multiplied by the change
in an extensive‘parametér (ééneralized displacement such as
volume ). Thus the work done by expanslion of a system 1is
dW = PdV or the total work for a large volume change with‘P
a function of V 1is /3

wo- [ ra
v

L
For magnetic materials, the generalized force is the magnetic

intensity H, and the generalized displacement may be elther
the magnetic induction B or the magnetization M.



.
Two possible definltlions of the thermodynamic system
are given by Callenz) when he considers the work done on a
battery by a thermodynamic system that 1s in the field of a
solenold powered by the battery. His first definition of
the system divides the work into two parts. The first part is

- . a
d WVAc. = - d [ gm JHE-(T d V] (2-1)
and represents the work done by the vacuum, Hext 1s the field

Intensity at the position of dV when there is no materlal in
the solenoid. The second part 1is |

Jw, ~ fn,,r dM Qv

which represents the work done by magnetic changes of the

\u

elementary dlpoles of the thermodynamic system. If the fields
and magnetlization are uniform as with an ellipsoid in an

infinitely long solenoid

cJVU"”- = T j%% FLwr‘JHaf—— \/’twf<ib4

By expanding the differentials and integrating over all space,

3)

He lne shows that this 1s equivalent to

dw’l‘o'r - - X HidB"

9T (2-2)

Here Hi and B1 refer to the local filelds within the thermo-

dynamic system, Londonu) preferred to use this system and



these local values for his thermodynamic arguments,

Callen's second definition of the system excludes
the vacuum by droppihg the term given in Eqn. 2-1 and
there fore has

dwro-r = - \/ Ha'r QIM (2-3)

for an ellipsoid. Many recent authors such as Lyntons) use
this last definltion of the system.

After selecting the system and varilables, one can derive
other useful thermodynamic relations for sﬁperconductors by
using the laws of'thermodynamicé. Conservation of energy

1s required by the first law, which says
dU = d4Q — dW (2-4)

where dU 1s the lncrease of internal energy of the system,
dQ 1s the energy entering the system as heat flow, and dW is
the energy that left the system as work. As dQ 1s not an
exact differential, one introduces the entropy S, which 1s a

state function. The second law says

Q
ds > °-‘=,= (2-5)

It 1s often of interest to determine changes of internal
energy that exclude that part associated with heat. For this
TS 1s subtracted from the internal energy to give the Helmholtz

free energy

F= U-TSs 06)
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Thls 1s a useful quantity, for 1t represents the mechanical

part of the free energy that is available to do Isothermal work.
Equations 2-4, 2-5, and 2-6 gilve

dF < -dW - SdT

which becomes

dF = - PdV + VH _dM ~ SdT (2-7)

1f the process 1s reversible.
Usually 1t 1s more convenlent to measure changes of the
intensive parameters P and Hext rather than V and M. To obtain

a function with P and Hext as independent varilables one uses

the transformation

G = F + PV - VH“TM/

whlch gives

d6 & -sdT +VdP - VMdJH,,, (2-8)

where equality implies a reversible process. This Gibb's
function 1s particularly importént for phase changes that occur
for constant values of the intensive parameters. Therefore a
reversible phase transitlon must have dG = O.

Although G 1s continuous, there may be discontinuities
in the partial derivatives of G with respect to tempera ture
at the phase transition, The order of a transition is defined
as the lowest order derivative of G which 1s discontinuous.

If one uses the Gibb's free energy per unit volume g
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instead of G, then dG = O also implles dg = 0. For the
superconducting phase transition of a local region dV, the
condltlon dg = O glves

Fo (o, T, P)= 96 (W, T, P)

Also, Equation 2-8 gives

[ dg = - MAHL
™™
which shows that normal metal with negligible susceptibility

has 9M (H,N)T)P)= ?m (OJT)P>

and that superconducting material has
Hsu

%s (Hsn;T: P)— ?s (OJT) P>= - M‘JHL

o

where HL 1s the fleld intensity that would exist in the volume

element dV if there were no material in dV, but the sample was
otherwise unchanged. HSN is the strength of HL when the
reg;on-dv completely enters the normal state. The thermodynamic

bulk critical fleld 1s defined by the relation

a HSN
8’ - > ' (2"9)

Comblining these relatlons gives

Fm (OIT)P) - s (O,T)P>=

8T (2-10)
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6)
Gorter and Casimir ’ estimated gs(O,T,P) by assuming
a two fluid model wlth

X

fractlion of normal electrons

l -x

fractlon of superconducting electrons

and

9, (0, T,P) = 2f ?M(T) + (1-=») B

where B 1s a constant and gn(T) = =-1/R y T2 is the temperature
dependent part of the Gibb's free energy per unit volume of
free electrons. Minimizing gs(O,T,P) wilth respect to x,

taking x(Tc) = 1 and using Equation 2-10 gives

= L amd H D =H[I-T
T.! 8’ = T [—1:‘} (2-11)

Experimentally small deviatlons from this equation are
observed. The B.C.S.7) theory has been able to account for
some of these deviatlons by using a temperature dependent
energy gap. For low temperatures it predilcts

-1
Hcs (3-3 ~ HcB(O) [ | = 1.o7 (_f‘) (2-12)

which 1s of proper sign to correct for V, In, and Sn, but 1is
somewhat large. Lead and mercury need a correction of opposite
sign, and 1t has been suggested that their low Debye tempera-

tures necessitate corrections to the B.C.S. choice of a constant

Interaction potential.



9.
The two fluld model also predicts the temperature de-

pendence of the penetration depth in London'su) equatlons,

His equations are

r ] o
© 4N T
e~ T2 7
and 2
*’17' vx J +H = O
which gilve

r
‘7 F‘ = ‘fi?
A 1s called the penetration depth and shows that magnetic

flelds are not excluded entirely from the sample but penetrate

as -2
Hw) = Hio) e 2

In London's theory

a::n ',’L"

¢{1r/n3<31

where ns is the number of superconducting electrons. The two
fluld model gives
Mg = M. (}" 4‘)

T
where L = ’-F: is the fractlon of normal electrons and Mooy

1s the total number of electrons. Comblning shows that

)
A (M) —}T(%-;

Ty

£
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This relation agrees rather well with experimental results
and falrly closely approximates the B.C.S. prediction.

This penetratibn of magnetic flelds reduces the mag-
netization from that expected for a body with B1 = 0, The
reduction means that Eqn. 2-9 does not have HSN(T) = HcB(T)’
but has HSN(T) > HcB(T) for samples with dimensions comparable
to the penetration depth. Very thin films of thickness

a << )\ have

A
}lSNﬁﬁ oC chtn) —?E—

This penetration of magnetic fields seems to suggest
that the Meissner expulslon of flux when the fleld 1s reduced
from a large value 1s energetically unfavorable. The magnetic
energy should be reduced by having the superconductor divide
into superconducting threads which have dimensions smaller
than A and are separated from each other by eXtremely thin
normal regions. Londonu) solved this problem by arguing that
there must be a surface energy associated with the normal to
superconducting interface. He showed that the surface energy

per unit area Slys must satisfy the condition

o > A He
NS

However, his theory could not gilve a good estimate of the mag-
nitude of o, because it assumed that the superconductor was
characterized by an ordered state that remained unchanged with
position near the N-S interface. Lilkewlse, the fraction of
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normal electrons x 1n the two fluld model is a constant
less than one 1n the superconductor and changes abruptly
to one at the N-S interface.

In 1950 Pippard8) suggested that X must be replaced by
an order parameter that changes gradually near an interface.
He approximated this varlatlon by saylng that it was equivalent
to moving the 1interface a distance E, » the coherence length,
into the supercondueting region. Becguse the free energy per

unit volume of a superconductor is Hea lower than that of

KL
the normal state, the free energy increase 1s approximately
H? g
Agg.n_‘" where A 1s the area of the interface. Sub=

tractlng the decrease in energy due to the magnetic fleld pene-

tratlon gives the net surface energy

2 a

Often 1t 1is easler to use a quantity with a diwension of

length rather than °°/us , and one uses A defined by

LRLECSY |

In the same year that Plppard introduced the idea of a
coherence length, Ginzburg and Landaug) developed an alternative
method that was based on variation of the order parameter.

Their calculation gave

Ao
A = |.87 2
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where X was defined by
a

2e 2 E

]
v = [ 35 1
This relationship holds only for small X and near the

10)

critical temperature. Gorkov's derivation from the B.C.S.
theory shows that the approaches of Pippard and Glnzburg are
equivalent and X can be derlved in terms of ¥ and vice

versa. To do this it 1s necessary to use the relation shown

by B.C.S.7) that
| T Eo@ﬁ

— -

Bo x A,

where 2 &€J/0)1s the energy gap at T = O and v, is the velocity
of electrons at the Ferml surface.

Looking again at Equation 2-14, one sees that for
E < A the surface energy becomes negatlve. Superconductors
wlth negatlve surface energy are called type II to distinguilsh
them from those wilth positive surface energy which are called
type I. Type II superconductors can also be described as
those with X > -V—:T' . The magnetic properties of these
two types of superconductors are dlfferent. Type II super-
conductors have a second order transition into the normal
state, and although type I superconductors have a second order
transition at Tc In zero fleld, they have a first order tran-

sltlion to the normal state in the presence of a magnetic field.
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Abrikosovll) has shown that the Ginsburg-Landau

equatlons indicate a nonzero order parameter above Hc

= V2 4.
up to H , = V2 KB for X > However, these type II
superconductors have flux penetrating below Hc2’ This
flux 1s quantized and has assoclated current vortices. He
also found that Hcl’ the lowest fleld at which flux quanta

exlst in type I1I material, 1s lower than Hc The regilon

B.

be tween Hc 1s called the mlxed state and exists even

1 and ch 25
for a demagnetization factor D of zero. Goodman glves an
alternative derivation of Hcl’ in whilch he essentlally deflnes
Hcl as the external fleld that glves zero net surface energy.
The net surface energy is approximated by
2 >
[ °<'~5] ~ A g Hce — Ah‘“‘"
NET 21 3m

Thus he flnds

40)

quantum with diameter & << A | minimlzing the Gibb's free

[ -

——

~ X (2-16)

Howevér, de Gennes says that when one conslders a flux

energy glves

For ellipsoldal specimens with D ¥ O there is flux
penetration below Hcl for type II superconductors and below

HcB for type I. This follows from the condition
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How = Hur — 4TDM

which was derived by Stonerls) for any ellipsold with uniform
magnetization. Before flux penetrates, a superconductor has

Hor = “4TM | which glves

H = Hevz
However, when Hmr = Hce a type I superconductor enters

the Intermediate state. Abrikosovll) has suggested that

an ellipsoldal type II superconductor may aiso have an inter-
mediate state at H, . = H, » but this has not been verified
experimentally. _

The intermediate state 1s characterized by rather large
superconducting domains, as opposed to the uniform vortex
structure of the mixed state. The large slze of the domains
1s a result of the positive surface energy, which makes the
vortex array energetically unfavorable. As the external fleld
1s increased above Hgy = Hes (1-D) the domains shrink with
an assoclated latent heat. Londonu) averaged the flelds
over the superconducting domains and normal channels and used
the free energy to derive the relation

He ~ HE.xT

—4TmM = 0.
5 , (2-17)

which approximates the actual behavior in the intermediate

state.
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Another model of the intermediate state proposed by

Kuperlu)

represents the superconducting domains as ellipsoids.
He minimizes the thermodynamic potential suggested by Landau
for the Intermedlate state and finds the size and spacing
of the ellipsolds. His model suggests a finite latent heat
for the transitlon from the Iintermediate state to the normal
state., For large ellipsolds 1t 1s quite small and the ob-
Served magnetlization should appear linear as predicted by
London.

Kuper says that smaller specimens may have an abrupt
drop to zero magnetlzatlion at the transition to the normal
state. In addition he predicts a horn-shaped rise in the

magnetization curve near
= I—D)
Hew H°(

The slze of the horn 1s determined by the positive surface
energy, the sample slze, and the domain structure. The horn
appears only for increasing flelds and is therefore a source
of hysteresls; however, this hysteresis is small for large
samples .

Type I superconductors do have another form of hys-
teresis assoclated with their positive surface energy and
latent heat. They can have elther the normal phase existing
below Hc or the superconducting phase existing above Hc.

These phenomena are respectively called supercooling and super-
heating and mean that the magnetization curve is not reversible

near Hc. Faber15) has made a careful study of this and has



16.
found that as in other first order phase transitions, a
minimum sized nucleation center is necessary to initiate
the phase change. He has also measured the velocity at which
the phase boundary spreads from the nucleation center and has
related 1t to eddy currents, the surface energy, the conduc-
tivity, and the external fileld.

Type 1I superconductors cannot have supercooling or
superheatling because their transition to the normal state 1s
second order. Thils significant result stems from the differ-
ence between the domain structure and the uniform vortex
structure of the mixed state and is based on Pippard'sl6)

s tatement thét supercooling never occurs for second order
phase transitions.

In addition to this hysteresls from supercooling, real
ellipsolds can have other types of flux trapping. There are
two Important sources of this added irreversible behavior.
Filrst, there are geometric effects such as surface lrregu-
larities or volds within the sample, and secondly, there are
inhomogeneities within the material of the sample.

The superconducting torus is a simple example that
shows that flux trapping can arise from geometrlc effects,
This shape was studled by Schoenbergl?) who used rings with
2 >> 1 where b is the radius of the ring and a 1s the wire
radius. H1s theoretical predictions shown in Flgure 1 were

in good agreement with his experimental results.
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Initially at point O in Figure 1, no flelds are
present, then as Héxt. 1s increased, currents are induced
~1n the ring preventing flux change at the center of the
ring. At point A, the sum of the external field plus the
fleld of the induced currents equals +Hc on the outer edge
of the ring. For higher flelds, flux penetrates to the center
of the loop, thus malntalning +Hc at the outer rim. The ring
enters the lntermedlate state at B and cannot shield the
interlor from higher filelds. For decreasing flelds the ring
changes from the intermedlate state to the pure supercon-
ducting state at point B. Then flux at the center of the
ring 1s trapped in an amount consistent with the condition
that the fleld at the 1lnner edge of the ring cannot exceed
H,. Below point D, currents are limited by the condition
that the fleld on the outer edge of the ring cannot be lower
than -Hc. 18)

Dolecek extended Schoenberg's analysis to a thilck
torus which had £-= 1.4 and found the behavior shown in
Figure 2. The residual moment with no external field is
reduced from Schoenberg's value, but 1t will be shown that
it 1s unllikely that trappling disappears even when b = a and
the body 1s not longer multiply-connected.

Another way to create a simply-connected body 1s to

use the altered shape suggested by London.u)

This 1s shown
in Figure 3 where the hole of the torus has been closed with

the thin bridge of superconducting material to make the body
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8 lmply-connected. However, for decreasing fields the ring
enters the pure superconducting state while the bridge is
in the intermedlate state thus preventing the bridge from
completely expelling its flux., For a thin bridge the results
will be similar to those of the hollow torus but thicker
bridges will have ex¢luded more flux before the loop becomes
purely superconducting and therefore will give less flux
trapplng. Only elllpsoldal specimens with uniform magnetiza-
tlon would be expected to be free from this type of trapping.

Schoenberg'slg)

tests on short tin cylinders i1llustrate
this fact rather well., Fields parallel to the cylinder axis
had much greater trapping than transverse filelds on the same
sample. Apparently, the large trapping for longltudinal
flelds stemmed from the sharp edges of the cylinder. This is
the reglon of greatest nonuniformity in the intermediate
state. Rounding the sharp edges with a flle considerably re-
duced the trapping. The contrasting small trapping for
transverse flelds probably resulted from the unfavorable
configuration for the formation of large trapping rings.

The maghetlzation for transverse fields was approximately

the same as that expected for an ellipsoidal specimen with

a demagnetlization factor of 1/2. Schoenberg found that the
trapplng in longltudinal fields had the same temperature
dependence as the critical field and that a magnetlization

curve at Ty could be superimposed on that at T, 1f both ~4ITM
-rt

»

were multiplied times the factor I+
T
l o

—
T

and H A
ex

)

t.
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Thils shape dependent hysteresis can be respons ible for
trapplng in ellipsoids that have surface lrregularities.
Consider an imperfection with a demagnetization factor
greater than that of the elllpsold as is shown in Figure U.
For purposes of 1llustration, the imperfection 1s chosen as
half a thick torus and the temperature as T = O. Before the
half torus reaches point A with field gA(O) on Figure 2, there
willl be no trabping. If the Imperfection 1s small and at the
equator of the ellipsoid, then point A corresponds to an
external fileld

He«-r B HALO) [ | - Deuam-o}

Ralsing Hext to some maximum value larger than this and

returning 1t to zero results in a residual magnetization

~HTMM, . This trapped magnetization increases linearly with

Hmnt = H°@ (-l—De]

and 1s constant at -”"M,“(f) for higher fields.

Hﬁax up to

For a temperature T > O, the half torus reaches point

A at a lower fleld
K]
e = HO [ 1 - 1;-] |

Thus, the half torus starts trapping flux if the external
fleld 1s raised to

Huw) = H0O) [1- De][_r~ T;:]

o
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If one applies

Huwe > He@ 1= 0a][1- ‘f*)

and reduces Hext to zero, then the residual magnetization
will be
2
T
_— T) = - 4T (O ' -
LITTMHM&() HHAX ) T

Of course it is not necessary for the imperfections
to be shaped 1like the half torus, and there may be many
types of Irregularitles. Probably those with sharp edges
trap the most flux. Thils distribution of shapes will deter-
mine the way that —‘”TMTMP varles with H ., and therefore
prediction of the functlonal relationship 1s quite difficult.
For 1f H . 18 ralsed to H _ + AH, then =4TM_ (H,m)
will be Increased not only by reglons which had no trapplng
at Hmax but also by regions that had trapping at Hmax and
behave like Dolecek's torus between A and B.

Although calculation of = 4TM_ (Hm(;r')) at some tem-
perature T, by E:?méidering the shape of surface imperfections
would be quite difficult, it is not difficult to predlct
-INTMT (Hm,fr‘)) at some temperafure ‘1‘2 after the trapping

has been measured for all me‘ Hc(:-D) at T As with

l.
Schoenberg's short cylinder, the magnetization curve at T2
of each surface lrregularity 1s found by multiplying both

~-4m™ ) ana H . (T,) by the factor |

&

| -

A
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Therefore, the net trapping at T2 resulting from all con-

tributing surface irregularitles wlll be

I
- 2
—4TTM,, (HM{T,])= -4 M. (Hm[ r,]) T;
| - L (2-18)
7;1
for the fleld
T‘
[ ==
HM,‘[.‘;-] = Hn»xYT'] - -.::“1 ) (2-19)
-r;';

Ir T2 /18 taken as 0°K, this transformation glves ~4TM,. w~3 Hioax
at T = O°K.

By measuring - ‘ITer s H,w‘ for two different tem-
peratures 1t 1s possible to predict Tc. Dividing Equation
2-18 by 2-19, shows that

- AT M, (me [K]) ~ 4T M, (Hmax[n]l_
HMM [1;] - me ul

when

A

| -

me‘-“;] = me[t]

A
K

(2-20)

3!
—.

Therefore, 1f one finds Hpax[To] and Hmax[T]_], which give

the same value for: ""L'-Mf s then the H 4 values are related
A
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by Equation 2-20, which can be solved to gilve
ki
_r H n“[-l:] Ta. - HN &Ti] T,,'
C
me [T'] me [T“-—] (2-21)

These predictlons should also hold for type II super-
conductors as long as Hoox < Hcl(l-D). But they are generally
not appllicable after the sample enters the mixed or inter-
mediate state, because then flux penetration is no longer
limited to surface irregularitles. This means that inter-
nal inhomogeneltlies can also cause trapping, and usually
thelr hysteresls overshadows the small amount of flux trapped
within surface irregularities.

The temperature and field dependence of trapping due
to inhomogenelties 1s not easily predicted, but there are two
models which seem falrly successful. Mendelssohn'szo) s ponge
model 18 generally used for type I superconductors and two-
phase alloys. Type II superconductors are usually treated
with Anderson's pinning mode121’22).

Mendelssohn described the sponge as "formed by annular
reglons of high threshold value impenetrable for magnetic
flux that has once been caught in them." He said, "This
had the effect of fllling the material inside the meshes
wlth flux which remained 'frozen-in' rendering it non-

superconductive .,"

However, he stated that a large fraction
of the volume may be assoclated with the filaments of the

sponge mesh. In addition he emphasized "that the whole of
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the metal 1s superconductive, although part of it may be
rendered normal by 'frozen-in' flux."@%) Thus flux which
is 'frozen-in" by a localized Inhomogene 1ty may pass through
reglons with bulk critlcal fleld in order to escape at the
sample surface.

In this article the sponge model wlll be interpreted
in a somewhat modifled picture. It 1s assumed that in ad-
dition to high field fllaments, low criltical fleld inclusions
may permlt a sponge structure, In this case material with
the bulk crltical fleld forms the sponge mesh. Also, instead
of descrilbing the mesh by a critlcal field, it is described
by the critical current density. It wlll be shown that this
treatment bears a great simllarity to the pinning model,
which has "frozen-in" flux because of forces acting on flux
lines. But wlth type I superconductors the positive surface
energy requires an interface between the "frozen-in" flux and
the superconducting reglons. The surface energy aésdﬁiéted
with thls 1lnterface 1s more easlly treated by a sponge model
than a plinning model.

The critlcal current density is not as greatly influenced
by fllament size as the critical fileld. Londonu) recognized
the importance of the critlcal current density when he chose

as a fundamental relation the equation

F~ - 2s ~ g (2-22)
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Equation 2-10 relates this to HcB . Bean used a sponge

structure with constant critical current density 1ln the
filaments to predict the behavior of his sample, whlch was
made by pressing lead into porous glass. Livingstonau) has
studied two~phase alloys wlth one phase superconducting and
one phase normal. These normal inclusions did glve a sponge-
like behavlior; however, often the phases were not completely
segregated and the properties were influenced by having a
solutlion of one component 1in the other.

A sponge structure 1s not possible in an elllpsold of
a pure metal without inhomogenelities. Stable sponges can
form only at reglons where the free energy or surface energy
differ from the bulk properties. As the external fleld is
reduced, inhomogeneities with high crltical fleld or negative
surface energy may form closed fllament loops, which prevent
the flux 1inside the loop from being expelled. Inhomogeneltiles
with low critical fleld wlll serve as the normal channels be-
tween superconducting domalns in the intermediate state,
but fhey willl not be able to expel thelr flux because the
rema inder of the ellipsold will be in the pure superconducting
state and will act similarly to Schoenberg's torus.' The im-
portant range of external flelds that determines whether an
inhomogeneity will trap flux is that near the critical fleld
"and in the lntermedlate state. At lower flelds flux may es-
cape as with Schoenber%fa torus, but a stabllity condition
is mainly concerned wlth the manner in which the inhomogeneity
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first forms a closed current loop at a fleld where homoge-

neous material would have expelled flux.

This suggests that an approximate stability condition 1is

‘A(%w—?s)l - A\T L = ‘lr::t (J;+J:AG (2-23)

where ) A.(gn - gs)l represents the difference in free energy

per unit volume between the inhomogeneity and the bulk.
A
v
homogene 1ty, and OL”.is the surface energy required to create

is the ratlo of the surface area to the volume of the in-

an interface between the bulk and the inhomogeneity. This
interface 1s necessary to enable the two adjacent regions to
carry different currents. The term on the right represents

the energy per unit volume assoclated wilth electronic currents.
J, 1s the current density of the currents that shield the
center of the loop from flux changes. Jmag 1s assoclated with
the magnetizatlion of the region carrying currents and is

approximated by

@ HFIL )
T —
413 J"QG = f MFIL d HFIL
(-]

where Hfil 1s the magnetlc 'Intensity at that reglon. This

term ascertalns that the shlelding current of a reéion goes
to zero when that region reaches its critical field.

If g 1s positive, then the size of a stable trapping

center will be determined by_e-which varles approximately as

%.where d is the radius or smallest wldth of the Inhomogeneity.
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In this case, IA (gn-gs)‘ must be non-zero, which means
that the critical temperature of the Inhomogenelty must be
different from that of the bulk. This 1s true when one can
use Eqn. 2-10 and the observatlons by Pippar‘d8) and Muench2 5)
which showed that 1t;{1purit1es and strains change H B and Tc
in such a way that _CB remains constant. As changes in T,

are usually small, |A(3... 93)] will be small, and there-
fore stabllity for °<'BF > 0 requires d >> ).

Negative °<‘BE‘ seems to favor very small d; however,
perhaps [O(BF] » @8 used to derlve Eqn. 2-16, is more

NET

significant. 1In as much as [ e becomes positive for

BF]NE'I‘
small HFil there may be small filaments with d =) that are

stable at high fields near the intermediate state, but not

near H = 0. Also since 3
ext . T-I_ E X
’ — 4
Hea () H.J©) ( 1;‘>
A I ~ 8 ( - 7\(T)> m 0)— A(p>
I "' T;\

these small filaments wlll be more stable at low temperatures.

For both large and small filaments Jmag assures that JT

goes to Zero at the critical fleld of the filament. A large

filament would be influenced by Jmag in assoclation with flux

expulslion from the filament. From Eqns, 2«10 and 2-22 one
finds that

2 b &) _ HLO __I_T[; f]
J (M) =< l(”) x(o)[’ = -
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Thus the temperature dependent critical current should vary

: 3 4
JM- J.© il- 1'1_:.1} {H'-%.]

as

6)

2
Bardeen has made a study of how Jc 1s affected by the
scattering of quasi-particles at impuritles and thin film
boundaries. He glves the slightly modified form for thin

films

%
DL RRNIOTREE-Y

Thls form is simply related to the critical field by

L0 = Je | e ri

(2-25)

S

Assuming that \L_QQﬂFO) has the same temperature de-
pendence as Jc glves a prediction for the way that the trap-
ping of a sponge structure will depend on temperature. Thus

a fixed array of fllaments should have

H_4(T) 5
— oL _JEL—i] 226
YTTM H.©) ( )

This relation 1s not expected to hold if the stability con-
ditlons of Eqn., 2-23 allow changes 1in the number of stable
filaments with temperature. Therefore, Eqn. 2-26 1s not ex-

pected to describe the temperature reglon very near to Tc
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or the very small high fleld filaments of Eqn. 2-24 which
appear at low temperatures.

27)

Glover has studied thin tin films and found that
their critical currents are described rather well by Eqn.
2-25, However, Meiklejohngs) found that tantalum gave

J.) - J(O)[;_ﬁ]N[Hﬁ}L&

T T

where N = 2,3, He felt that his was due to gaseous Impurities
and showed that although pure tin films had N = 1.5, N in-
creased as indlum impurity was added and N = 2.3 for 3% indium,
A sponge structure that 1s anchored on Impurities probably
wlll be affected in a similar way.

These predictions do not necessarlly hold for type II
superconductors whose flux penetration occurs with an ordered
array of current vortices. In the homogeneous material the
fluxoid interaction will prevent the formation of fillaments
that can trap flux. Motlon of these current vortices 1is more
easlly descrlbed by the pinning model of Andersonal) than the
sponge model, but it is of interest to see what predictilons
may be expected from a sponge model.

As a stars, one could consider a ring of type II qaterial.
As long as the fleld at the outer edge of the ring does not
eXxceed Hcl’ flux will be excluded from the center. Above H
flux penetrates because the ring enters the mixed state and
can no longer support the transport currents necessary to

shleld the interlor, Such shielding would require that the
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array of current vortices have a nonuniform distribution in
the ring.

Next, conslder inserting a smaller ring inside the
first. This ring would be shielded from flux changes and
carry no current until the outer ring reached the mixed state.
Then, however, 1if the outer ring had no transport currents,
1t could provide no shielding for the inner ring, which would
also be requlred to enter the mixed state. To prevent this,
the sponge model assumes the threads are quite small and

limited by thelr current density rather than Hc Thils means

1°
the outer ring would shleld the inner one completely untill 1t
reached 1its critical current density ‘J‘ . For higher filelds
1t would stlll have a transport current determined by

J¢2= J: + J:;G . It is easy to see that a torus com-
posed of many filaments could shield the center better than a
single large ring. The large ring could only have surface
currents whereas the threads would have almost uniform current
denslty across the cross section., This 1s similar to the

2
mechanism proposed by Bean 3)

to describe his lead filled
glass; however, he did not 1nclude Jmag in his calculations
and therefore hls J. did not go to zero when the field was
very high,

But, as was shown, large single phase materials com-
pllcate this picture with interface energles and vortex
interactions. 1In order to Justify the formation of inde-

pendent fllaments, there must be 1nhomogeneit1és. Followlng
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a natural impulse, one says high field threads are formed.
As there are three critical fields, this i1s not sufficient.
If the bulk critical field 1s high, then the eritical current

density willl also be high. But one must also congsider Hcl

and H,. Increasing H,, but not X’ increases both H,, and

1

H,. However, increasing g but not HcB increases ch and

decreases Hcl'
The temperature dependence of H 1 and H 5 become quite
c c
complicated because they depend on both H (T) and x (T).
: cB

Eqn. 2-15 from Ginzbur-g'sg) theory glves the temperature

dependence of X as

xRt - K [;-'-;,]
A modlificatlion proposed by Gorkov and calculated by Helfandeg)
glves a somewhat different temperature dependence. If
Abrikosov's derivation of Hcl 1s used, this temperature de-

30
pendent X should also give Hc Harden and Arp ) have per-

formed the numerical 1ntegrat1:;ns necessary to find Hil- from
K or vice versa., Another interesting approach woulnge to
calculate ;‘i (T) from Eqn. 2-16 by using the B.C.S. theory to
find % . Pec?haps ,this would agree with Hecht's31) experimental
results which found Haa (1) = Constant.

Inasmuch as the derilvation of Hcl from X does not agree
well with experiment, it 1s somewhat difficult to predict the
temperature dependence of trapping. Threads that are large
compared to A glve better shielding for large Hcl’ and there-

fore thelr trapping will increase with HcB(T); however, theilr
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dependence on & (T) 1s uncertain. J, should also increase
with HcB’ 80 trapplng for small filaments should also

increase with Hc Whereas large threads may be rather inef-

B*
fective for trapping in the mixed state, small threads may
remaln effective to high flelds where their trapping will be
influenced by the temperature dependence of ch’

Nevertheless, this sponge model is not well sulted to
describing the motlon of current vortices, and a somewhat
eas ler approach is to postulate force fieids for inhomogenei-
ties. These force flelds arise from variation of the vortex's
free energy wilth position due to inhomogenelties in the
material and may alter the regular vortex pattern. As a
result, several lines can collect at a minimum to form a
bundle. It seems that this minimum would correspond to a
minimum of (gn - gs) rather than of g . Reglons with low 8
would have hlgh critical current density and act as barriers
to the motion of vortices.

Pushing these flux lilnes into bundles creates flux
gradlents 1n the sample. The force per unit length on one

flux line 1n a field gradient is

F = - _g a__‘iucl\s

HTr I
For equllibrium this force must be balanced by an equal and

opposite force arising from the free energy varlation associated

wlth the barrier. This pinning force 18 therefore

¢ M
FP = W 344_“







