INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA
313/761-4700 800/521-0600
RICE UNIVERSITY

PHYSICAL AND REAL TIME DELINEATIONS ON THE ELECTRO-MECHANICAL THRESHOLD

by

SOMMER SCHAUER

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE MASTER OF ARCHITECTURE

APPROVED, THESIS COMMITTEE

Mark Wamble, Assistant Professor, Director Architecture
Sanford Kwinter, Visiting Cullinan Professor of Architecture
Albert Pope, Associate Professor Architecture

Houston, Texas

May 1995
ABSTRACT

Physical and Real-time Delineations on the Electro-mechanical Threshold

by

Sommer Schauer

As we increasingly encounter electronic communication and information systems in our everyday environment, we must recognize and critically respond to their impact on built architecture and on our physical and social bodies. The ubiquity of these systems makes location irrelevant and makes it increasingly difficult to locate ourselves perceptually in relation to them. If real space and time are becoming irrelevant, where does that leave us as architects—primarily makers of physical space? The "lag space" and "lag time" (i.e., the physical and real-time byproducts) of these networks may be territory in which we can intervene. I am proposing a field of interventions (using the relationship of Anderson Hall to the campus security system as a case study) delineating the threshold between the physical and the electronic—heightening awareness of one's political, social, and spatial relationship to the system and to the built architecture.
Acknowledgments

This thesis has been brought to you in part by: the official sponsors, Mark Wamble, Sanford Kwinter, and Albert Pope, whose usually level-headed criticism and support throughout my duration at Rice has been much appreciated; my comrade in good intentions, Karin Taylor, for general good humor and moral support; the Frisbee-golf crew: Dan Silver, who did not have to be coerced to help with installation; and Roger and Rich from Valhalla for establishing par; Kyle Martin, for preliminary research; the unpatriotizing majority of the staff at Southland Hardware who are enjoying a year in the black with my help; Diet Coke; and, most of all, Thaddeus Briner, whose love, beyond-the-call-of-duty support, and truly constructive criticism saw me through this semester.

This thesis was not brought to you by those officials of this university who do everything within their power to ensure that no aberration in the hypernormality goes unremoved on this frighteningly suburban campus; or by vandals who uncritically destroy rather than add.
Table of Contents:

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Security Systems and Safe Houses (Part I)</td>
<td>2</td>
</tr>
<tr>
<td>Security Systems and Safe Houses (Part II)</td>
<td>13</td>
</tr>
<tr>
<td>Security Systems and Safe Houses (Part III)</td>
<td>18</td>
</tr>
<tr>
<td>Bibliography</td>
<td>26</td>
</tr>
<tr>
<td>Appendix A: Operating Instructions</td>
<td>28</td>
</tr>
<tr>
<td>Appendix B: Technicolor Delineators</td>
<td>42</td>
</tr>
<tr>
<td>Appendix C: The Course</td>
<td>48</td>
</tr>
<tr>
<td>Appendix D: Preliminary Inventories (I)</td>
<td>54</td>
</tr>
<tr>
<td>Appendix E: Preliminary Inventories (II)</td>
<td>57</td>
</tr>
</tbody>
</table>
Introduction

The advent of electronic communications systems and "smart buildings" has given added definition to the concept of the non-autonomous architectural entity. Beyond contextual and formal issues, we must recognize that buildings with integrated electronic systems have real, yet mostly invisible connections to the larger world. Within these mostly invisible networks, however, there must be some instances of human interface: the card-readers, intercoms, video cameras, fax machines, computer terminals, etc. which must exist as an ironic reminder of our physicality. How have these non-autonomous objects within built architecture affected it and our political, social, and physical bodies moving within?
Security Systems and Safe Houses (Part I)

In Technology and Politics, Langdon Winner discusses two ways that technology (the object and its system of production) can embody politics:

1. "...some kinds of technology require their social environments to be structured in a particular way in much the same sense that an automobile requires wheels in order to move. The thing could not exist as an effective operating entity unless certain social as well as material conditions were met."

2. "A given technology is strongly compatible with, but does not strictly require, social and political relationships of a certain stripe." Winner cites solar energy, which seems particularly sympathetic to democracy, but not only usable under that system." ¹

It could be argued that the buyer and user of the technology is a necessary component in determining the politics of the object in its post-production phase. How it is implemented can be equally as important as its mode of production. Gilles Deleuze and Felix Guattari propose the existence, under certain sets of conditions, of a "machine" dependent upon man as a vital component.²

In "Balance Sheet-Program For Desiring Machines," Deleuze and Guattari discuss the absurd desiring machine of Man Ray's Dancer- Danger:

The object is no longer to compare man and the machine in order to evaluate the correspondences, the extensions. the possible or the impossible substitutions of one for the other, but to bring them into communication in order to show how man is a component part of the machine, or combines with something else to constitute a machine.³

Man Ray’s image represents an impossible machine: the cogwheels are irrevocably locked into place by one another. *Dancer-Danger* becomes a functioning machine only in conjunction with the viewer, who completes the circuit by his/her cognition of this fact.

Deleuze and Guattari recognize a condition wherein the object perceived to be the machine is only an instance of physical realization in a much larger system. The object has implications beyond itself that are enacted only when one interacts with the object/machine, making the participant complicit in the workings of the larger mechanism. This could have more poignant political consequences. For instance, when one drives a car, one becomes part of the greater system of road users: following a (begrudgingly) accepted set of legal and implied rules of movement is a life or death matter. A wary assumption must be made that one’s fellow commuter will move within a prescribed framework of time, speed, and direction in any given situation: implicitly, that everyone is perceiving space in a similar manner. A somewhat democratic realm (of those whose socio-economic situation allows them to own and drive a car) is achieved.

³ Deleuze and Guattari, p. 117-118.
Is it possible that objects embodying these exterior implications can be perceived as secure in one context but destabilized by decontextualization? Marcel Duchamp was the founding father of this idea. His Readymades were decontextualizations of the most mundane of objects. By simply moving them into the context of the art gallery or by siting them differently in relation to the ground plane, Duchamp sought a “new thought” for the objects that made one suddenly aware of properties of the object never before noticed. 4 George Basalla claims that these objects (even unmanipulated) acquire “aura” depending on two conditions:

1. Emotional attachments to both form and function of ordinary useful things.
2. ...to be effective, the beholder must experience both the emotional bond to the original form and function and bonding to the new function in what is still the recognizably old form. The spectator, driven to resolve the dissonance between old and new functions, generates an aura about the transformed object. It becomes a “transfiguration.” 5

Judging from the reception of “Fountain” (a urinal turned 90 degrees on its side) at the Salon des Indépendents show in Paris, for which the piece was conceived by Duchamp, these objects were quite capable of creating insecurity in their audience.

Robert Smithson took an entirely different outlook on decontextualizing objects. His non-sites were gallery-bound artifact/documentations from certain remote sites. They did not attempt to re-create the site, but to bring certain qualities of the site into the gallery where they were immediately apprehendable. These non-sites included physical samples

from the site but could also include writings, photographs, and other forms of
documentation that were displayed in a "three-dimensional abstract map that points to a
specific site."\(^6\)

In the game of dialectics that Smithson played, the actual experience of the \textit{non-sites} as
sites in themselves redefines the \textit{original} sites as the \textit{non-sites}.\(^7\) While these \textit{non-sites}
did not depend on the object as such, a kind of objectification of the site made possible its
apprehension. In turn, the \textit{non-sites} reiterated the idea that the object was informed and
referred to circumstances outside of itself. The object was never secure because it was
continually flipping from site to non-site, and both conditions could never be
apprehended simultaneously.

An object perceived as secure may be the best disguise for an insecure one.

Decontextualization is an overt clue that the object is not functioning (cognitively and
otherwise) as usual; but how can one consider an object that seems to be exactly in its
element yet is still somehow displaced?

Ann Bergren discusses the strategy of \textit{metis}, the Greek term for "cunning intelligence."

She defines it as "the power and product of transformative intelligence...continued shape

\(^5\) Camfield, p. 138.
\(^6\) Henry M. Sayre, \textit{The Object of Performance: The American Avant-Garde Since 1970}. (Chicago: The
shifting, imitating the form of the enemy and defeating him with your trick at his own game...the circular reciprocity between what is bound and what is binding." 8 She cites this activity in a female context in Greek mythology. In addition, she cites the inclination of the Greek female to displace herself, making her unstable and unsecured by her husband: "Once placed (in marriage), however, the female is then ...supposed to stay put. She is supposed to become the sure foundation of the oikos of her husband. But as Greek myth obsessively repeats, the placement of the female is unstable: if the female is able to move, the stability of her construction is uncertain." 9 The body of the female inscribed with certain power structures becomes an unstable non-site in itself.

Following closely is the Situationist International's practice of detournement, which "proposes a violent excision of elements from their original contexts, and a subsequent destabilization and recontextualization through rupture and realignment." 10 When activated by the Situationists this concept most frequently found form in propaganda-type posters with an aesthetic of comic book animation. In both metis and detournement, a torqued re-placement of the object or action in its original context is implemented to achieve subversive change.

7 Sayre, p. 229.
9 Bergren, p. 15.
Would it be *safe* to say that the *secure* object is in jeopardy?

If the secure object is no longer (if ever it was) a reality, what is the status of the body in relationship to these objects and to architecture? Some of the least autonomous objects one may encounter on a daily basis are objects of human interface with electronic information and communication systems. These objects serve as the local embodiment of networks far beyond the horizon of perception. These mostly invisible systems have profound effects on built architecture and our social and spatial bodies moving through it.

As architects--primarily makers of physical space--we should be concerned about this turn of events for several reasons:

Ubiquity. These systems are everywhere, making the old real estate axiom of “location, location, location” obsolete.

The subsumption of built architecture: Information and security systems often embedded within the built architecture itself are determining the degree to which the building is porous to human traffic--not the number of doors and windows.

Personal location: With the placelessness these systems cultivate and the almost instantaneous speed at which they can communicate, it is becoming increasingly difficult to locate oneself spatially or perceptually in relation to these networks.
Fredric Jameson discusses the problem of perceptual difficulty in what he terms

postmodern hyperspace: it has, he says

finally succeeded in transcending the capacities of the individual human body to
locate itself, to organize its immediate surroundings perceptually, and cognitively
to map its position in a mappable external world. It may now be suggested that
this alarming disjunction point between the body and its built environment...can
itself stand as the symbol and analog of that even sharper dilemma which is the
incapacity of our minds, at least at present, to map the great global multinational
and decentered communicational network in which we find ourselves caught as
individual subjects. 11

Returning again to the idea of the larger “machine”, we must accept the human user as an
integral part of the machine. With technology constantly redefining itself, however, we
must also be redefining our relationship to it. With the advent of electronic technology,
the machine/object began to lose qualities that had allowed it to be apprehendable by the
user. Streamlined plastic boxes enclosing (not disclosing) circuitry replaced more self-
evident mechanizations, such as the engine, or even simpler mechanisms such as the
cogwheels in Man Ray’s *Dancer-Danger.* With the loss of a clear cause and effect
relationship, a spatial dislocation can take place in the relationship between man and
machines.

11 Fredric Jameson. *Postmodernism, or, the Cultural Logic of Late Capitalism.* (Durham, North
Some manner of cause and effect (in that order) seem to be craved by our perceptual tools. Cynthia Davidson argues that some concepts, such as speed, are "still symbolized by the mechanical: by racing cars, rockets, F-16 fighter planes, TGV trains." These devices maintain some aspect of mechanical comprehensibility. She proposes, the "sublime aspects of speed" in the electronic realm--

where it no longer can be seen or heard, as in Thomas Pynchon's V2 rocket--leads to a sense of a loss of control...can the mechanical still function effectively, i.e., symbolically, at the rate of speed now available through the electronic, which threatens both a loss of real physical control and of an understanding of the physical? 12 This leads to a recurring question: if real space and real time are becoming obsolete, where does that leave architecture? Several responses could be posited: ignore the problem--continue to build as it has been done for hundreds of years; embrace the technology wholeheartedly and uncritically; or respond in an accepting yet critical manner.

I would propose that an area in which architects can operate is the "lag space" and "lag time" (i.e., the physical and real time byproducts) of these electronic systems. These lags could be found in the time it takes to have a credit card approved for a sale, the distance from the door that a card reader is placed, or the physical infrastructure required to house the electronics of the system. The territory between the user (and the user's body) and the technology constitutes another kind of lag--reaction time. Here, in spatial and

temporal lags, could be the perfect interval in which the architect could intervene--both in terms of recognizing the relationship's collective make-up as a "machine" and of reintroducing an index of the body as a component of the intervention.

Glenn O'Brien cites an exemplary situation concerning the infiltration of lag time in an overdetermined, overly specific structure by subversive elements. He argues that corporate lag time is responsible for the foothold that allowed New Wave to enter the mainstream music scene in the early 1980's:

At the same time that record companies were becoming more and more categorical, departmentalized and formulized, a large number of musicians were making music completely unrelated to the marketing structure. Pretty soon, stretch, rip, boom. Hundreds of people were starting cottage record industries. A new category had formed spontaneously--in the void created by the blind spot directly above and behind every record company executive. The New Wave grew up inside the corporate time lag.

The most compelling reason for lag between creation and distribution, O'Brien goes on to write, is that corporations always have "a major investment in the past as inventory. The past has to sell out before the future can be stocked."

Could this be some kind of a model for a manner in which to react to a centrally determined ubiquitous network? Could local cause and local effect be the actions which occur in the lag?

As demonstrated in the previously cited comments of Fredric Jameson and Cynthia Davidson, there has recently been considerable recognition of the loss of self-perception (and therefore bodily perception) in the context of the electronic realm. Currently, the majority of attention given to the body in design associated with the electronic realm remains within the domain of ergonomics; under the guise of comfort, ergonomics promotes efficiency in our productive bodies—allowing less liberation from the corporate entity than ever. Even without the advent of the electronic era, though, architecture has been struggling with the question of bodily inscription for most of this century. In his article *The Unconstructed Subject of the Contemporary City*, Albert Pope argues for the recognition of a multiple subject in lieu of both the anthropomorphically inscribed Classical subject or the completely unconstructed neo-Modernist subject. Danger lies in the (neo-modernists') rejection of the inscription of the subject, which promotes the internalization of the power structure: “the architectural inscription of the subject becomes a moment of resistance...the visible, concrete, and material of architecture, including all of its heterogeneous moments, is enlisted in the attack of the invisible, immaterial, singular internalized site of power.”

Elizabeth Diller and Ricardo Scofidio bring a similar stance to their work. Instead of classically inscribing the figure, or pronouncing it dead, they omit the figure but reveal it

15 Albert Pope, "The Unconstructed Subject of the Contemporary City.", (unpublished article) p. 13.
by building the social structures which define it. In his article "Body Troubles," Robert McAnulty defines the milieu of the body in Diller and Scofidio's work:

These bodies are capable of action and reaction, but their movements are defined within a network of forces, both political and gravitational. And this network is important to us because it inscribes our bodies through our constructions, our spaces. Here again we are confronted with a model of space wherein the body's significance is not as a figural source of mimetic projection, but as site for the inscriptions of power.

The secure site is once again called into question by the shifted inscriptions of the body.

Security Systems and Safe Houses (Part II)

My working research has been focused this semester on the intersection of the Architecture building (Anderson Hall) and its immediate surroundings with the mostly invisible campus security systems: how this network impacts the built architecture and our physical, social, and political bodies as we interact with it. I believe that the campus security system makes a good case study for the following reasons: It is an existing electronic information system with a network extending far beyond our perceptual horizon; It already affects bodies and movement through the building; After a certain time each day, the building’s doors are locked and entry is only permitted at two doors--providing that a person is carrying a certain identification card with certain information on it; It is embedded within the architecture; It is part of our daily routine and environment which has not been considered architecturally; I am already thoroughly familiar with it; It is a convenient site on which to work.

My interventions are based structurally on existing infrastructure of the security system. As a group they delineate in physical terms the field of the security network and its relationship to the building; provide alternate uses of existing networks; and do both of these through user engagement, with the user as a primary component of the relationship.
My process of working--full-scale, in three dimensions, and installed in an everyday public context--is equally as important to me as any single final product or conclusion. I feel very strongly that the work should be offered as a site of interaction with the architecture and not as a precious piece of work sitting in a white-washed gallery. This process is also specifically important to the thesis itself by trying to come to terms with the intersection of the physical and electronic realms; this study on paper would have none of the first-hand understanding or experimentation of the installed pieces. A recurring question resulting from the implementation of these pieces was the question of durability in a public context.

Dennis Adams has dealt extensively with similar issues in his own work. The majority of his work is comprised of real constructions inserted into public contexts, often taking the form of bus stops. While I am dubious as to the spatial consideration of each singular structure, I find them collectively compelling in the manner in which they deal with an urban assumption--the bus stop. Adams acknowledges the bus stop as an important (and somewhat democratic) site in the contemporary city. His interventions deal with the temporary activity of waiting for the bus--acknowledging another lag between system and user. He takes the opportunity of this lag to heighten one's awareness of certain issues (particularly pertaining to the media) and of one's presence as spectator in the city.
Several issues have surfaced during the course of the semester that have arisen from these installations specifically. Personal objects (originating in the domestic realm) which form the basis of each of the pieces, prompted me to question why these objects are more susceptible to manipulation and are more effectively manipulated. Is it their prior associations in our collective consciousness, or that they are already scaled to our bodies, or is it, in a Duchampian way, that they were secure objects that have been displaced and are secure no longer? Another open-ended question arising from the base objects concerns the fuzzy line between public and private information and how that line is further clouded by electronic communication systems.

Each installed piece acts as a delineation of interaction between ourselves and the electronic information system. They are not meant to be representations, only attempts to begin working in that territory. None are summations; each attempts to come to terms with only a few aspects of the situation. In general, the pieces, which will henceforth be termed “delineators”, work as a field, having no hierarchical or controlling center. They were conceived as separate points to be encountered randomly, not as a linear progression. They each work locally, affecting space around them with a direct and apprehendable cause and effect. Each one, however, also has a remote connection, although not to the same entity.
I began my built research with an investigation of the concept of the electronic threshold in relation to the existing physical one. For the purposes of this thesis, I have defined threshold as an area which one crosses in moving from one spatial or temporal condition to another.

The standard physical threshold present in architecture for thousands of years has been comprised of a stone, wood, or metal piece integral with the frame of the door, that can be crossed by the physical body almost instantaneously. Lingering in this threshold can promote sociability—as evidenced by the frequent occurrence of people gathering at doorways to talk at social gatherings or parties. One could hypothesize that the threshold is a desirable place to monitor at the same time events taking place in more than one room; it is also a physical constriction that brings one into more intimate proximity to the other participants in the conversation.

While physical thresholds are still somewhat of a necessity in built architecture, how has the concept of ‘threshold’ been altered by the addition of electronic thresholds? In Anderson Hall, the addition of the card-readers and their accompanying networks has extended the threshold both spatially and temporally. The spatial threshold could be said to begin at the location of the card-reader, usually four to five feet away from the door. (This dimension, however, is completely arbitrary; the door lock mechanism could be
released from miles away.) The information “read” from the magnetic strip on the identification card is sent to the campus police station three-quarters of a mile away to be verified, then returned to the card-reader within the time of three or four seconds; thus, the threshold is extended across campus. The temporal threshold also begins with the act of sweeping one’s card through the card-reader and waiting for acceptance. After acceptance is gained, ten seconds are allowed for one to open the door. The electronic security system recognizes the duration of the door not being closed, instead of the split second in which it takes one’s physical body to cross the physical threshold. By the time the door actually shuts and the system recognizes a return to a steady state, the user could be several yards beyond the door, thus extending the spatial and temporal threshold once again.

Security Systems and Safe Houses (Part III)
The following is an overview of the five delineators (which are, in effect, instances of built research) and their connections to the ideas previously stated in the thesis. Please refer to the brochure in Appendix A for explicit instructions on the use of each installed ‘delineator’.

WATCHDOG works in several ways to heighten one’s awareness of this extended threshold. It relies on the door as its object of structure and point of interface with the security system. Upon activation by a user opening the door, WATCHDOG responds by raising its “face” to the door (see figure 1.1 and 1.2 in Appendix A), displaying the time of day, and playing its radio for the duration of the time that the system would recognize the threshold. The noise (apprehendable by the ear) allows one to locate oneself spatially and temporally to the recognized threshold. The pulley and cable system offers a visually apprehendable cause and effect relationship within the space. Information is received by the clock radio from a remote source rather than being transmitted to one.

The threshold is also extended in one’s memory by the use of the alarm clock object which refers one daily event of encountering that object in the domestic context, presumably hours earlier, before encountering it in a foreign environment. The clock radio also acts as a threshold delineator--between the sleeping and awakened states.
Status as installation in public space: In the early morning of April 23, 1995, the portion of the piece which controlled the “snooze” button and the piece which held the counter-fishing-weights was cut off and stolen. WATCHDOG has been repaired and remains annoying. One delivery man claimed to have been hit in the head by an unidentified falling object.

WEIGHT A SECOND (OR THREE) concerns itself with a similar idea of the temporally expanded threshold and with the investigation of the exchange of information between user and system. This delineator relies on the card-reader as its physical and cognitive structure and point of interface with the security system.

Realizing that one’s feet are meant to be placed on the scales, and putting them there, allows one to locate one’s physical body in relationship to the object of interface—the card-reader (see figure 2.1 in Appendix A). As the identification card is swept through the reader, information is relinquished by the user and about the user to the electronic. With WEIGHT A SECOND, the user can exchange that information for information about his/her own physical body by looking down at the scales in the three second lag before the door is opened. When the door is finally released, the weight of the user pops the door open, (via the pulley system) allowing the user to physically feel the instant in which control of the opening of the door is relinquished from the electronic system to the
user's personal physical ability to pull open the door. Once again, the "machine" has repercussions in its locality as well as remote connections.

The use of the bathroom scales as base object recognizes that scales are objects which have a remarkable effect in ordering the physical and social bodies of many Americans. Scales provide information that could determine the movements and actions of a person on any given day—whether or not to exercise, to eat, etc. In this application, a reluctance to get on the scale may have an effect on when one enters the building or whether one does it in the presence of others. Scales are also (indirectly) a device in our social order—one may be granted or denied access or privileges according to their physical traits and body type. (Take for example the suits brought against airlines for unfair discrimination due to weight.)

Status as installation in public space: WEIGHT A SECOND has fared well with the exception of a single incident in which the cables had been re-threaded through the slotted angles clamped onto the card-reader. No real damage was incurred.

I SPY reverses the positions of monitor and user. It relies upon the emergency phone poles for its physical structure and point of interface with the security system. The emergency phone poles consist of a three-inch-diameter steel pole nine feet high with a blue safety light attached to the top which is activated by a photocell at dusk. A red steel
box with the word "EMERGENCY" or "TELEPHONE" written on it contains a dial-less telephone whose only connection is a one-way link to the police station.

The medicine cabinet (see figure 3.1 in Appendix A) is notoriously a place for acquiring information about friends and neighbors while snoop ing around their bathroom at parties. The mirror gives one physical information about oneself; then, by opening the door and activating the repositioning of the scope, information about oneself is exchanged for enhanced visual information of a site (or of people) too remote to normally be scrutable.

The newspaper holder acts as camouflage for surveillance--as any good spy knows. A motion detector activates a police scanner when you pass by, which reverses the one-way link to the police station which the phone provides--letting the user monitor the monitor.

The umbrella attached to the exterior provides a blind/shelter indexing the space of a single body and acknowledging the busstop near which it is installed as well as the lag time of waiting for the bus.

Status as installation in public space: I SPY has attracted much curiosity but has not suffered any noticeable assaults. It, however, has been removed after threats from the campus police to remove it on the grounds that it was “detracting from the effectiveness of the emergency phone.” (per: Rice Chief-of-police; May 5, 1995). It seems that the campus police do not believe that people in emergency situations are capable of distinguishing the box which contains the EMERGENCY phone.
The **FRISBEE-GOLF COURSE** also relies on the emergency phone poles for structure. Eighteen poles distributed across the campus serve as “holes.” Junction boxes serving as targets (with bells inside to indicate a direct hit and beer holders attached) are strapped to each of the poles. (See figure 4.1 in Appendix A). Currently the field of poles functions as spoke-like extensions (one-way links) to the hierarchical center of control, the campus police station, with no communication possible between poles. The **FRISBEE GOLF COURSE** turns that structure into a field which depends upon the links between poles. Location becomes important (rather than merely a numbered extension) and the distance between poles take on a dimension that is physically apprehended—that of the number of throws it takes with a certain weight of Frisbee to reach the next pole. The course becomes a means of traversing the campus independent of sidewalks or streets or other geo-political boundaries. Poles are numbered for purposes of identification only, and are not meant to suggest a particular route of progression. Pars are provided (scientifically researched by Valhalla denizens) so that the user can choose to navigate an advanced or novice course.

The map directory located at pole #1 helps one to locate oneself in the non-geo-political terrain seen from surveillance photographs from Skylab, U-2 spy planes, and from LANDSAT.
Status as installation in public space: The FRISBEE GOLF COURSE has, as of minutes prior to this writing, fallen prey to the same powers that called for the removal of I SPY; and for the same official reasons. It seems that aberrations in the secure context of Rice are perceived as having a threatening effect. Otherwise, feedback has been excellent, and participation in the course itself has been good.

E-MAIL relies on the Rice identification card as part of its cognitive and physical structure, although all major credit cards and ATM cards are also accepted. The card is slid through the slot where indicated (see figure 5.1 in Appendix A) in a manner similar to that of the card-reader. This motion opens and holds open the mailbox door. Inside the mailbox contains a “bug zapper” whose power is activated by a motion detector at the opposite end of the mailbox from the door. The open door allows bugs to see the light, effectively activating the bug zapper and subsequently making a local bug-free space.

The mailbox is not sited in its usual location near a street or in front of a door. As a threshold between public and private it has been displaced into an area in which no geopolitical boundaries are acknowledged. The frontality of the mailbox has also been eliminated.
ZAPPER II is E-MAIL’s remote link. ZAPPER II is a television unit situated at the door between hallway and stairwell conceived as a “people zapper.” It is activated by the same motion detector that activates the power to the bug zapper and therefore one’s ability to watch the television is determined by an unseeable outside event: someone else’s interaction with E-MAIL. ZAPPER II’s blue light and capacity to attract people and do questionable things to the human mind parallels that of E-MAIL insect effects. The power source of ZAPPER II and E-MAIL is a light in the stairwell situated only feet from ZAPPER II. The path of the information and electricity that activates ZAPPER II simulates that of information traveling from a card reader to a remote brain and back before enacting an effect.

Status as installation in public space: On the night of Thursday, April 27, E-MAIL’s post suffered a permanently debilitating attack. The most likely assailants are either a) a maintenance truck, or b) a drunken pub-goer. A trip to Home Depot at 7:00 a.m. on the next day was necessary to replace the appendage.
Pronounced D.O.A.: the secure object. Police failed to answer the call, assuming it was just another false alarm. The insecure object is still on the loose, hiding out with its sidekick--the unstable body--vacillating between site and non-site, public and private, placed and displaced, informer and informed, local and remote....
Bibliography

Pope, Albert, “The Unconstructed Subject of the Contemporary City.” Unpublished article.

APPENDIX A:

Operating Instructions
(1) SET
DELINATEORS

OPERATING
INSTRUCTIONS

CAUTION: This product has not been licensed by
any state or federal agency. USE AT YOUR OWN
RISK. The manufacturer cannot and will not be held
responsible for any accidents involving the use of
this equipment.

Some helpful safety guidelines are as follows: Wait
thirty minutes after eating before going back in;
don't try this at home; and by all means, don't cross
your eyes, they'll stay that way.

DISCLAIMER: Characters depicted herein are not
purely fictional and may be based on yourself or
someone you know. Resemblance is not
necessarily coincidental.

WARRANTY: Contact your local dealer for specific
answers. The standard dealer free-maintenance
policy is good for 15 minutes after the installation of
the product or up until the first time it malfunctions,
whichever comes first. Just disassemble and return
to dealer. Your revived delineator should be
returned within the calendar year.

TROUBLE SHOOTING: Our entire line of products
has been and can continue to be maintained in
working order with one or two trips to your local
hardware store daily. Southland Hardware at
Wasteimeir and Woodhead meets quality control
standards of this manufacturer. If after six o'clock or
after you're annoyed with certain members of the
sales staff at Southland, try Home Depot or Builders'
Square. For more complex problems refer to the
fishing and hunting department of Academy
Sporting Goods, or the cosmetic appliance aisle at
your local Walgreen's.

HELPFUL HINTS: For questions, suggestions,
recipes and other household hints, call our toll free
number listed on product: twenty-four hours a day,
seven days a week. This week's special topic: what
to do with leftovers.

SPECIFICATIONS: To specify any of our products,
please call the factory directly. No two are alike. All
dimensions are subject to change hourly, as are
applications for each product. All products are
manufactured on the premises and implemented on
the premises.

NAVIGATION: products are to be experienced in
the routine course of events of daily life; they were
not conceived as a linear progression and may
seem erratic. This however, is a result of a process
of production of physical experimentation and
implementation. Imperfections are in the nature of
the product and should be regarded as adding to
the unique character of each product.
Your WATCH DOG security supplement is designed to provide hours of enjoyment—just realizing that you’re walking through the door! No more sitting down at your desk and wondering when and how you got there—

Getting to know your WATCH DOG:

Components: Consult figure 1.1.

Door (a): Location of direct user interaction.

Leash (b): connects WATCH DOG to door via pulley system.

Barker (c): Raises its head, greets with a friendly or menacing bark (you select the channel), and then goes back to sleep.

User/intruder (not shown in diagram): that’s you.

Directions:

1. Approach door. WATCHDOG is in resting position. See figure 1.1.

1. Open door fully (A); WATCH DOG will begin to bark at full extension. See figure 1.2.

2. Walk across physical threshold.

3. Keep walking and listening as door is closing behind you.
4. When door closes, WATCH DOG goes back to sleep (fig. 1.1). The electronic threshold has been crossed.

5. Exit other door and walk around building.

6. Repeat steps 1-5 as necessary.

You'll soon find that WATCHDOG is man's best security friend!

figure A.3

figure 1.1

figure 1.2
Get something constructive out of the lag time between the cardreader and the door with the WEIGHT A SECOND (OR THREE) security supplement.

Components: Consult figure 2.1.

- **Scales** (a): Standard household body evaluation equipment.
- **Card reader** (b): Common interface component of campus security system.
- **Door** (c): Object of changing allegiance—electronic system to manual system.

Directions:

1. Step on scale, locating your physical body in relation to this manifestation of the security system—the card reader.
2. Sweep card through reader (B), relinquishing electronic information about yourself.

3. Information exchange: while waiting for your existence to be verified, glance down and read scale to gain some information about your physical body.

4. Remain on scale until security system releases door. Your body's weight will pop open door (C), allowing you to physically feel the transition from electronically controlled entry to physically controlled entry (A).

5. Weigh daily as necessary.
Getting to know your I SPY:

Components: Consult figure 3.1.

Eye (a): It sees you before you see it.

Neighborhood watch (b): Instead of getting your noisy thrills at parties in your hosts' medicine cabinet, just visit your local I SPY.

I (c): Mirrored door to survey yourself, then open up to survey others.

Scope (d): Extends as door is opened (D) to fluidly give you surveillance potential instantly.

Peephole (e): for scope.

Counter-surveillance (f): Police band radio scanner. They're tapped into you electronically, so why not give them some of their own medicine? And if they need to hear from you, just reach down to the red phone and start talking.

Instant disguise (g): Like a good spy, clamp on the newspaper and hide behind your daily news as you survey the situation.
Shelterblind for one (h): while waiting for the bus, watching, or reading the paper in the rain.

UFO (): For use with or without Frisbee golf course. See accompanying text below.

Directions:

1. Approach I SPY. Sensor will activate police scanner.

2. Eye yourself in the mirror.

3. If raining, or if camouflage is necessary, extend umbrella arm and open (H).

4. Open cabinet door. Your personal visual information will be exchanged for visual information beyond your immediate surroundings with the aid of the scope.

5. Watch as long as is warranted.

6. Return Frisbee if removed.
FRISBEE-GOLF COURSE
Country club model

CAT. NO. 59-003-01

Additional remote units
CAT. NO. 59-003-02
through CAT. NO. 59-003-18

Try our luxurious 18 pole course at prestigious Rice Country club! You’ll discover the fun of ignoring concrete (and asphalt) suggestions while traversing the campus, even at night.

Getting to know the course:
Consult maps in main directory located at pole #1 for a more extensive view of the course, located here in beautiful "Space City." Course lay-out, local details, and par are located in the main directory and at each of the remote locations (b).

Components: Consult figure 4.1.

Frisbee: Located in 1 SPY. See figure 3.1. Kindly return when finished.

main unit: Located at pole #1. Contains full map set plus all features of remote units.
remote units: Located at emergency phone poles around campus. Each is composed of the following:

answering machine (a) : unit sounds a special signal when your Frisbee hits the target.

navigation charts (b) of course layout, local details and par.

refreshment holder (c) keeps spills away while teeing off or settling a score.

figure A.9

figure 4.1

Directions:

1. Start at any pole.

2. Consult map and decide which pole will be your immediate goal (There is not suggested progression. Numbers are for identification only.)

3. Set drink in cup holder (C).

4. Throw Frisbee towards pole.

5. Record number of throws to pole.

 NOTE: Pole-in-ones to be rewarded with beer from fellow golfers.

6. Repeat steps 2-5.

7. Stop when you get tired.

NOTE: Country club course may be used at night, since all poles are lit by blue light after sundown. Glow-in-the-dark Frisbees may increase visibility.
Components: Consult figure 5.1 for exterior components and figure 5.2 for interior components.

mailbox (a): bodily indexed arm of U.S. postal network.

card slide (b): takes all major credit cards.

credit card (c): (provided by user) physical card becomes catalyst and structural element.

flag (d): "no vacancy" sign.

bug zapper (x): mosquito BBQ.

bug receptacle (e): no more carcasses lying around the yard.

auxiliary unit: ZAPPER II: Slices, dices, and chops, just like the original, only this one attracts pesky humans.
Directions:

1. Approach E-MAIL from any side---we can't see the boundaries that determine this mailbox's placement.

2. Take credit card out, insert and slide as indicated---door will open, effectively activating bug zapper (B). Flag will simultaneously rise, indicated that E-MAIL is occupied (D).

3. Leave card in for duration of stay; bug zapper will render the local space delightfully bug-free (C).

4. When through enjoying the space, simply remove credit card---flag and door will return to their former positions.
If auxiliary unit has been purchased:

Wire into sensor and place in remote location. ZAPPER II will be activated only when someone is checking their E-MAIL. see figure 5.3

figure A.12

figure 5.3

NOTE: Do not EVER touch or lick the bug zapper component of your E-MAIL! Horrible things will happen which you will not discover until you do.
APPENDIX B:

Technicolor Delineators
APPENDIX C:

The Course
THE BACK NINE
APPENDIX D:

Preliminary Inventories (I):
APPENDIX E:

Preliminary Inventories (II):

Objects of Navigation
1. backpack
2. sleeping bag
3. pad
4. notebook
5. Swiss army knife
6. wine
7. cookware
8. fork and sharp knife
9. playing cards
10. sunglasses
11. thick socks
12. boots
13. extra clothes
1. metal cocktail cups
2. stirrer/testing spoon
3. bottle opener
4. 750 mL liquor bottles
5. traveling bar