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Abstract

Performance of Multicomputers using High-speed
Communication Links

by
Haider Abbas Rizvi

This thesis presents the results of a simulation study of the performance of a
message-passing multicomputer using high-speed point-to-point communication links.
The multicomputer system consists of IBM RS /6000 machines linked by 220 megabits
per second fiber-optic links. This system is simulated using RIOSIM, a fast, accurate,
and flexible execution-driven parallel architecture simulator. An accurate timing
profiler, simulating the superscalar capabilities of the RS/6000 at runtime, generates
dynamically timing estimates for the instructions executed. The simulation results
are validated against actual measurements on a two-processor system, using a variety
of algorithms. Results show that the errors are typically around 8%.

The validated model is used to study systems with more than two processors.
Simulation results indicate that this setup is suitable for coarse-grained parallel algo-
rithms, some of which show almost linear speedups. For fine-grained algorithms, the
high overhead in message passing proves to be a serious bottleneck, resulting in less

than linear speedups.
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Chapter 1

Introduction

1.1 Motivation

Parallel processing is the wave of the future in the world of computing. Device tech-
nology places an upper bound on the speed of any single processor and technology is
approaching fundamental physical limits, including the transmission speed of a signal
being limited to be less than the speed of light. In order to achieve more processing
power, a number of such processors must be used in parallel. Many important prob-
lems requiring huge amounts of computational power can be solved with algorithms
that possess a high degree of parallelism. Such problems include three-dimensional
fluid-flow calculations, real-time simulations of complex systems, dynamic air-flow
calculations, and weather forecasting. Parallel processing promises to provide a way
to achieve immense amounts of computing power for many applications. This moti-
vates the development of parallel computers that can take advantage of the parallelism
inherent in these applications.

In this thesis, we study a message-passing distributed-memory multicomputer
which is built using high-performance node processors. The node processors or nodes
are connected to each other using very high-speed communication links. Our objective
is to study the performance of a multicomputer which is built using off-the-shelf high-
performance workstations. We also describe a simulation system using the execution-
driven simulation technique to simulate this multicomputer. The simulation system
includes an accurate and efficient profiler for the base processor of the system, which

gives time estimates for the execution of blocks of code. The profiler, and hence the



simulation system, allows the users to choose various levels of detailed simulation of
the computer. This gives the users a choice between accuracy and performance of the
simulation system.

The principal contribution of this research is the determination of the relative
effects of changing different parameters of this multicomputer on the performance
of the multicomputer. These parameters include the transmission speed of the com-
munication links, overhead in sending messages over the communication link, the
interconnection structure of the multicomputer, and the speed of the processor being
used in the multicomputer. We study these effects for algorithms with quite different

granularities of parallelism running on this multicomputer.

1.2 Overview

There are two basic types of parallel processing systems available in the market. They

are

¢ shared-memory systems

¢ distributed-memory systems

In shared-memory systems, also called tightly-coupled parallel systems, multi-
ple processors are allowed to access memory in a single global address space. The
shared global memory may be a single memory system or a physically distributed
memory that spans the global address space. Interprocessor communication takes
place through variable sharing. In addition, each processor may contain a small
local cache. In distributed-memory systems, also called loosely-coupled parallel sys-
tems, the memory is both physically and logically distributed among the processors
in the form of local memories. Message passing between the processors is responsi-

ble for providing interprocessor communication. Some shared-memory systems are



Sequent Balance, KSR machines, IBM RP3 and BBN Butterfly [Hwang84, Trew91].
Examples of distributed-memory systems include the Intel iPSC hypercubes and the
Thinking Machines Connection Machine-5 (CM5) [Lewis92, Stone93]. In the liter-
ature, shared-memory systems are sometimes called multiprocessor systems, while
distributed-memory systems are often called multicomputers [Athas88, Seitz90].

The processors in a parallel computer (both shared-memory and distributed-
memory) are connected to each other using an interconnection network. The in-
terconnection schemes can be classified as direct or indirect [Ni93, Abraham89]. In
a direct interconnection scheme, processors are connected to each other using point-
to-point links. Examples of direct interconnection schemes are the ring, mesh, and
binary n-cube architectures. In the indirect interconnection scheme, the intercon-
nection network is a separate entity, with inputs and outputs. The inputs and out-
puts are processors in the case of message-passing multicomputers, while for the
shared-memory multiprocessors, processors and memories are the inputs and out-
puts. Examples of indirect interconnection schemes are the indirect binary n-cube
networks, omega networks, and crossbar switches [Hockney88, Siegel90].

One more criterion for distinguishing between parallel computers is the granularity
of the parallelism that can be used effectively by the computer. The granularity of a
system is a measure of the size of the units by which work is allocated to processors.
Different types of granularities are coarse, fine and medium.

Coarse-grained parallel computers may distribute the work among the processors
at the highest level in an algorithm, e.g., at the outer loop of an iterative algorithm or
at the level of individual procedures. Coarse-grain parallelism implies a small num-
ber of powerful processors. Examples of such computers are the Cray 2 and the Cray
XMP. Fine-grain parallelism often implies a large number of small processors. The

unit of computational work in fine-grained parallel computers may be the execution
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of one statement or an iteration of an innermost locp. Examples of such systems are
Thinking Machines’ Connection Machine-1, and the Massively Parallel Processor by
Goodyear. Medium-grain parallel computers fall between the two extremes. Most
commercial parallel processing systems can be considered medium-grained parallel
computers [DeCegama89]. These computers typically use inexpensive but powerful
microprocessors, such as Intel’s 80386 and 1860, Motorola’s MC68000, SPARC, MIPS,
etc. Examples of such systems are the Encore Multimax, BBN Butterfly, Sequent
Symmetry, Intel iPSC/2 and iPSC/860 hypercubes, and Connection Machine-5 mul-
tiprocessors.

In this dissertation, we describe a medium-grained message-passing multicomputer
based on the IBM RISC System/6000 (RS/6000) processors. These processors are
interconnected via point-to-point links using the fiber-optic ports provided on the
RS/6000 workstations. A message-passing system provides the necessary message-
passing primitives required for message handling, message packetizing, and routing
of packets. This message-passing system runs as a light-weight thread under a light-
weight threads package running on top of the base Unix-like operating system. User
processes also run as light-weight threads under this package and can communicate
with each other by sending and receiving typed messages. The message-handling
system supports asynchronous blocking and non-blocking message passing calls.

The reasons for choosing the RS/6000 computer as a basic building block for the
multicomputer are its exceptionally high computing power [Bell91, IBM90b, Hall91,
Oehler91], relatively low cost, and very high bandwidth interprocessor fiber optic
links. The RS/6000 processor is a superscalar processor having a separate fixed-
point and floating-point processing units. It also has separate instruction and data
cache units. The fiber-optic links provide a mechanism for transmitting data at bit

rates which are an order of magnitude faster than conventional wire networks. With



the exceptional floating-point performance of the RS/6000 processor, we expect the
combination of a high-performance processor and a high-speed communication link
to be good for parallel algorithms solving numerically intensive problems.

We evaluated the performance of these systems using an extension of the Rice
Parallel Processing Testbed (RPPT), a set of software tools for the simulation of
parallel architectures [Covington91]. The RPPT uses the execution of real parallel
programs to provide execution time estimates for the programs on the simulated ar-
chitecture. Since the programs are directly executed on the processor, the execution-
driven simulation has relatively low simulation overhead compared to instruction-level
simulation. For the execution-driven simulation of a multicomputer using RS/6000s,
an accurate and efficient timing profiler has been developed for the superscalar pro-
cessor architecture of the RS/6000. The profiler shows an error of less than 5% of
measured time, with a profiling overhead of the order of 150. The simulation model
was validated by implementing a simple two-processor multicomputer. We then used
the simulation system to project the performance of similar systems with more than
two processors. The simulation errors are typically around 8%, while the simulation
overheads are approximately 300.

Simulations were run on different numerical algorithms (sorting, graph problems,
simultaneous linear equations solver, etc.) The simulation time was compared by
running these algorithms on different number of simulated processors. Also, sim-
ulations were run changing different parameters of the multicomputer system, and
similar comparisons were made. Our simulation studies indicate that a large amount
of time is spent in sending and receiving the messages on the fiber-optic links. This
results in less than linear speedup for all the algorithms we executed. Some coarse-
grained algorithms, like successive over-relaxation, show close to linear speedup while

the fine-grained algorithms do not show any speedup or negative speedup because of



the high overhead in message-passing. Simulations in which the overhead is reduced
by a factor of four project performance improvements of up to 45.4%. We have also
studied the effects of changing certain other parameters of the system, like the max-
imum packet size, the speed of the fiber-optic links, the interconnection structure of
the processors, etc. Changes in these parameters show little benefits, because the

high message-passing overhead overshadows the effects of these changes.

1.3 Related Work

Various message-passing systems, supporting different message-passing protocols, have
been developed for different platforms. In the following section, we present an
overview of several message-passing systems. Efficient simulation of parallel comput-
ers is an important research topic and lot of research has been done on this subject.
In Section 1.3.2, we look at different simulation systems that have been used to sim-
ulate and evaluate parallel computers. A timing profiler is an important component
in an execution-driven simulation system. Previous work done in the field of profilers

is described in Section 1.3.3.

1.3.1 Message-passing systems

Two types of message passing protocols have been developed: synchronous and asyn-
chronous. In synchronous message-passing systems, if a process sends a message, the
process is blocked until the receiving process has received the message. A process try-
ing to receive a message is blocked if no suitable message has arrived at the process’
node. If a process is allowed to continue immediately after sending a message, without

waiting for the destination process to receive the message, it is called an asynchronous



send. An asynchronous receive call returns to the calling process immediately, along
with an indication of whether or not a suitable message is available.

The V-system [Berglund86, Cheriton88, Cheriton83] is an operating system for a
distributed system with processors connected by an Etherret link. It supports a more
restrictive form of synchronous message-passing primitives than that described above.
A process making a send message call is unblocked only after the receiving process
has received and replied to the message. A process can also forward a message, in
which case the next receiving process should reply to the message.

The Intel iPSC/2 and iPSC/860 hypercubes’ operating system NX/2 [Intel91]
supports asynchronous message send and receive primitives. It also allows interrupt-
driven send and receive calls. The send routine returns to a user provided interrupt
handling routine when the send is complete. Users can also provide an interrupt
handler routine for receiving messages. The message-handling system allows typed
messages.

The Express kernel [Flower90, Par90a, Par90b] is a message-based multitasking
system. Express lets users make typed asynchronous blocking and non-blocking mes-
sage send and receive calls. It also provides some “loosely synchronous” calls. A node
making a loosely synchronous call waits for all other nodes to make the same system
call. Thus, all nodes are synchronized after the call completes.

PICL, a Portable Instrumented Communication Library [Geist90], developed at
Oak Ridge National Laboratories, is a library of message-passing primitives avail-
able on many different machines. It permits some low- and high-level asynchronous
message-passing primitives. Only blocking send and receive are available in this li-
brary. PICL is based on the low-level primitives provided on each platform for its

implementation. Only one process per node is allowed in PICL.



The Cosmic Environment/Reactive Kernel (CE/RK) [Seitz90] is a message-passing
operating system originally developed at CalTech. It allows the users to send and
receive blocking and non-blocking messages. It does not suppert typed messages and
also cannot distinguish among messages arriving from different nodes. This operating

system is used in Ametek 2010 hypercube systems.

1.3.2 Simulation systems

Different methodologies are used for the simulation of parallel computer systems.
These include instruction-level simulation, trace-driven simulation, and execution-
driven simulation. To decide which methodology to use for simulating a computer
system, two important factors need be considered: efficiency and accuracy. Each
simulation methodology is characterized by a different tradeoff between these fac-
tors. For example, execution-driven simulation is more efficient than instruction-level
simulation but it is less accurate.

An earlier version of the RPPT was used to simulate and analyze different par-
allel computer systems. Covington [Covington88a] developed the RPPT methodol-
ogy and validated his simulation results against a 16-processor Intel iPSC/1 hyper-
cube. Debbad [Debbad89] added interrupt handling and timeslicing capabilities to
the RPPT. He used the RPPT to simulate the V operating system running on Sun-3
workstations connected using an Ethernet link.

Simon (SIMulator of Multicomputer Networks) [Fujimoto83, Fujimoto87a] is an
execution-driven simulation system. Simon is able to simulate message-passing mul-
ticomputers and provides different modules to describe the architecture of the multi-
computer. It supports simulation of multicast and broadcast of messages.

Mpsim [Dunigan86, Dunigan87] is a hypercube simulator developed at Oak Ridge

National Laboratories. A limitation of this system is that it does not use light-weight
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threads for simulating user processes; instead, it uses Unix processes. Due to this, only
a small number of user processes, no more than 16, can be simulated, thus limiting
the size of the simulated multicomputer. Mpsim can simulate the Intel iPSC/1 and
iPSC/2 systems, and produces trace files for message events for these computers.
These traces can then be analyzed using different trace analyzers.

PSIMUL [So87] is a distributed multiprocessor simulator running on a shared-
memory multiprocessor (an IBM 3081). PSIMUL can provide performance statistics
of executed instructions and memory accesses of a parallel program execution. Also,
it can produce traces of instructions and data memory references.

Stunkel et al. [Stunkel89] use the execution-driven simulation technique to pro-
duce address traces for multicomputers. These address traces are used in performance
analysis of the simulated multicomputer. They also use a profiler similar to the basic
block profiler described below.

Tango [Davis90] is a multiprocessor simulation system developed at Stanford
University that can be used as a trace-generating or execution-driven simulator. It
also uses heavy-weight Unix processes to simulate user processes, and is limited to
simulating a small multicomputer.

Proteus [Brewer91] is an execution-driven simulation system developed at MIT.
It can be used to simulate shared-memory or distributed-memory multiprocessor sys-
tems. A basic-block profiling tool is used to provide an estimate of machine cycles
required to execute a code segment. The profiler does not simulate the data cache and
assumes uniform cache hit rates. Proteus, like the RPPT, uses light-weight threads
to simulate user processes.

The Wisconsin Wind Tunnel (WWT) [Reinhardt92] describes an execution-driven
distributed discrete-event simulator which can simulate shared-memory multiproces-

sors. WWT runs on a message-passing multicomputer CM-5. It directly executes
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the user program on the node processors till a cache miss occurs, at which point
WWT simulates a cache-coherent protocol. WWT has been validated against results
by Tango/Dixie simulator for the simulation of the Stanford DASH shared-memory

multiprocessor [Lenoski92).

1.3.3 Profilers

In execution-driven simulation systems, a timing profiler is used to acquire timing
estimates for the execution of blocks of code. These estimates are then used to
increment the simulation time, to account for time spent in the execution of those
blocks of code.

Weinberger [Weinberger84] first implemented the basic block profiling technique of
analyzing basic blocks in an assembly program to obtain dynamic instruction counts.
The RPPT profilers use a similar technique to determine the execution time for a
basic block. In a basic block profiler, a global counter is used to accumulate the total
cycles spent in executing all the basic blocks to get an estimate of the execution time
of the program. Basic block profilers for a variety of machines have been developed
for the RPPT [Covington88a]. These include profilers for the Motorola 68020, TI
320C25 DSP, Intel 80386 and 860, Vax, Pyramid and SPARC processors.

Fujimoto et al. [Fujimoto87b] developed a basic block profiler to be used in
SIMON, an execution-driven simulation system. They also developed a technique
for simulating systems where the host and the target processors have different in-
struction sets. BKGEN [Huguet87] uses another technique for simulating a target
processor which has a different instruction set than the host processor.

Stephens et al. [Stephens91] use instruction level profiling technique for the IBM
RS/6000 processor. They collect statistics for dynamic instruction mix, branching

behavior and resource utilization for the processor.
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For this project, a timing profiler has been developed for the IBM RS/6000 pro-
cessor. The profiler employs an extension of the basic block profiling technique used
in the previous RPPT profilers. The new technique, called the in situ technique, was
originally developed by Carson [Carson91]. In this technique, a runtime model of
the superscalar RS/6000 processor is used to generate dynamically timing estimates
for the execution of a block of code. Previous research for profiling a superscalar

processor for obtaining such timing estimates does not exist.

1.4 Organization of the Thesis

This thesis is organized as follows. Chapter 2 describes the design of the profiler
developed for the RS/6000 processor. It discusses some features of the RS/6000
processor which were most important in influencing the development of the profiler.
Chapter 3 presents an overview of the fiber-optic links present on RS/6000 machines.
It also describes the model of the AIX fiber-optic links driver used in our simulation
system. The multicomputer and the message-handling system developed for this
computer are also explained in this chapter. The execution-driven simulation system
used to simulate the multicomputer is presented in Chapter 4. This chapter also
presents the validation resuits for the simulation sysiem. Chapter 5 presents the
performance predictions for larger multicomputers with a similar setup. Finally, some

conclusions and avenues for some future work on these systems are presented in

Chapter 6.
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Chapter 2

Design of the RISC System/6000 profiler

An important component of the RPPT execution-driven simulation system is a fam-
ily of timing profilers. The profilers are a necessary tool for implementing execution-
driven simulations, since they generate the processor workload to be used in simula-
tions.

A profiler produces an equivalent executable program which, when executed, gives
an estimate of the number of cycles that would be required to execute each part of
the unprofiled program on a particular machine. These estimates are used to drive
the architecture simulator in the RPPT (see Chapter 4).

A parallel program for the RPPT is written in C using the function calls provided
in the YACSIM (Yet Another CSIM) library [Jump93, Rizvi93]. This program 2
then profiled by a tprof profiler, which generates execution-time estimates for the
program, thus making the program suitabie for combination with the corresponding
architectural model in the complete simulation.

Two styles of profiling are used in the RPPT. Standalone profiling derives its tim-
ing estimates from information that is specific to the processor on which the profiling
takes place. The profiled code is then executed directly on this same processor. In
certain circumstances, however, it is desirable to execute the profiled program on
one processor (the host), vet allow the timing information be derived from a second
processor (the target). This scheme, called cross profiling, is useful when program

execution on the second processor may be expensive or inconvenient.
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The performance of a profiler is measured by its ability to produce correct timing
estimates for the execution of a block of code, and to keep the overhead of profiling
low.

This chapter describes the in situ profiler for the RS/6000 machines. In situ
profiling is a new technique which uses a simplified runtime model of the RS/6000
processor to obtain dynamic timing estimates. This technique was developed to simu-
late the superscalar nature of the processor. The profiler is used in RPPT simulations
of a message-passing multicomputer consisting of RS/6000 processors connected by
high speed fiber-optic links. The remainder of this chapter is organized as follows.
In Section 2.1, a typical standalone profiler is described. Section 2.2 describes the
main features of the RS/6000 architecture which were considered in writing the pro-
filer. Section 2.3 describes the profiler for the RS/6000, and in particular the special
considerations required for the RS/6000 profiler that differentiate it from previous
profilers. It also describes the runtime model of the processor as used in the profiler.
Section 2.4 discusses the performance of the profiler with regard to its accuracy and
efficiency. In Section 2.5, we discuss some potential sources of error in the timing

estimates produced by the profiler.

2.1 Standalone Profiling

Standalone profiling, or native profiling as it is sometimes called, is a relatively low
overhead method for obtaining detailed information on a program’s execution behav-
jior. One of the first implementations of this technique was the bb (basic block) profiler
[Weinberger84] developed at Bell Labs. However, while the bb profiler is primarily
used to obtain dynamic instruction counts, the tprof profilers in the RPPT are used

to generate estimates of the execution time of a program.
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The bb profiler and the tprof profilers do the profiling analysis based on the basic
blocks of code in the program. Basic blocks are straight-line segments of code with
one entry point and one exit point. Once a basic block is entered, all the instructions
in the block are executed in series before execution passes to another basic block. A

basic block therefore begins with
e the first instruction in a file, or
e a labeled instruction, or

e an instruction immediately following a branch, except in the case of delayed

branches.
Basic blocks end with
o the last instruction in a file, or

e an instruction immediately before a label, or

a ~ heanah
¥ a viaulu.

The typical steps in standalone profiling are shown in Figure 2.1. The profiler
first identifies the basic blocks in the assembly language program. Each basic block
is then analyzed to estimate the number of cycles required for its execution. After
this, a few profiling instructions are inserted at the top of each basic block, which
increment a global counter by the cycle count of the basic block. These steps are

described in detail in the following section.

2.1.1 Generating profiled programs

The generation of a profiled program for a typical (non-superscalar) processor involves

a number of steps, which are listed below.
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Figure 2.1: Block diagram for standalone profiling
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Generation of assembly language program: An assembly language program is

obtained from the C program using appropriate compiler options.

Basic block identification: The basic blocks are identified in the assembly code

according to the rules described above.

Timing analysis: Each basic block is analyzed to determine an estimate of its ex-
ecution time. This essentially requires a table lookup using the opcode of each
instruction, taking into consideration the specific addressing modes which may

be used in the instructions.

Insertion of profiling instructions: Instructions are inserted in each basic block
of the assembly language code, to increment the global counter by the amount
required for the execution of the (unprofiled) basic block, as determined in the

previous step.

Compilation of the instrumented program: The instrumented program is as-

sembled to get the executable program which will drive the simulation,

Figure 2.2 illustrates the difference between an unprofiled and a profiled program.
The profiled program executes all the instructions in the original program and also
gives an estimate of the time required to run the program on the machine. Instructions
P1 and P2 in Figure 2.2 increment the global counter by the number of cycles required
to execute the basic block A4, as estimated by the profiler. Thus, after all the basic
blocks have been executed (i.e., at the end of the program execution), the global
counter variable will contain the aggregate of the cycles required for the execution
of the whole program. This is the profiler estimate of the execution time for the
particular program. Its accuracy can be checked against the measured real time of

the execution of the unprofiled version of the program.
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The superscalar nature of the RS/6000, the presence of a data cache, and certain
features of the RS/6000 AIX compilers required this simple approach to be modified
substantially. The following section describes the RS/6000 processor architecture em-
phasizing the features which force these major modifications in the original approach

for native profiling.

2.2 RISC System 6000 Processor Architecture

The RISC System 6000 (RS/6000) processor is a superscalar, second-generation re-
duced instruction set computer (RISC) processor that has a short cycle time and
a low cycles-per-instruction (CPI) ratio [Hennessy90, Johnson91]. In keeping with
the RISC philosophy, it has a relatively simple register-oriented instruction set, a
hard-wired CPU control unit, and a pipelined implementation. Unlike earlier RISC
processors, it has several advanced features, including multiple instruction dispatch,
simultaneous execution of fixed- and floating-point instructions, separate instruction
and data caches, and zero cycle branches.

The RS/6000 processor also has a tightly-coupled floating point unit, which fea-
tures a fused multiply-and-add instruction executed in two cycles, in a two-stage
floating-point pipeline, which means it can produce a floating-point multiply-and-
add result every cycle. Thus, the processor is capable of sustaining a peak rate of 50
MFLOPS at 25 MHz. A block diagram of the RS/6000 processor is shown in Figure
2.3.

The major components of the RS/6000 processor, and their influence on the design

of the profiler are described in detail in the following sections.
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Figure 2.3: Block diagram of the RISC System/6000 processor
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2.2.1 Imstruction Cache Unit

The instruction cache unit (ICU) contains a two-way set-associative, 8-Kbyte instruc-
tion cache with a line size of 64 bytes [Grohoski90b]. It also has the I-cache direc-
tories and a 32-entry, two-way, set-associative I-TLB. The ICU processes branches,
condition register instructions, and supervisor calls, and dispatches the rest of the
instructions to the fixed- and floating-point units.

Four instructions per cycle can be fetched from the I-cache arrays to the instruction
buffers and dispatch unit, which can dispatch up to four instructions per cycle. Two of
these are internal dispatches to the ICU (branches and condition-register instructions)
and two are external dispatches to the FXU and FPU. FXU and FPU never see any
branches, and in most cases they receive an uninterrupted instruction stream and
do not see the effect of the branches. This is referred to as zero-cycle branches.
Unconditional branches cause no delay in the pipeline. Conditional branches that
fall-through also have no penalty, while taken branches may delay the pipeline by up

to three cycles, depending on when the condition register was set.

2.2.2 Data Cache Unit

The RS/6000 has a four-way set-associative 64-Kbyte data cache (D-cache) divided
into four identical DCU chips of 16 KB each. The cache-line size is 128 bytes and the
cache is implemented as a write-back cache!. The DCU also features a cache reload
buffer (CRB) and store-back buffers (SBB).

The 128-byte CRB allows the CPU to start processing as soon as the required
memory datum is received into the buffers, without waiting for the whole cache-line

to be brought into the cache. The cache line is loaded into the CRB in eight cycles,

1The write-back caching protocol is also called the store-back protocol
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but the first packet from the memory cards contains the datum which caused the
cache miss. This allows the system to have a low cache miss penalty.

Store-back buffers are also 128 bytes long. They can accept data from the D-cache
or the CRB and pass it on to main memory. An SBB improves the performance
because the dirty line does not have to be written back to the memory before the new
line is brought into the cache. In addition, the data-cache arrays are not kept busy

during the whole write-back sequence.

2.2.3 Fixed Point Unit

The fixed-point unit of the RS/6000 processor has 32 32-bit general-purpose registers.
It handles the address generation and DCU controls for both fixed- and floating-point
loads and stores. The FXU also features a fixed-point multiply and divide unit: the
multiply instruction takes 3 to 5 cycles, and the divide instruction takes 19 to 20

cycles. The FXU has a one-word data path from the DCU.
2.2.4 Tloating Point Unit

The floating-point unit has 32 64-bit general-purpose registers. The FPU fully con-
forms to the IEEE 754 floating-point standard. The FPU has a double-precision-wide
data path and executes all floating-point instructions with double precision only. The
FPU can generate one double-precision result per cycle, and has a pipeline latency of
two cycles [Montoye90]. The FPU has a double-word data path to the DCU.

The FPU can perform a multiply-add operation with the same delay as a multiply
or add instruction. It also has four instruction decode buffers (IDB) which allow the
FXU to get ahead of the FPU. Also, the FPU uses register-renaming to increase the
overlap of the execution of floating- and fixed-point units. The FPU has six rename

registers.
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2.2.5 Synchronization between FXU and FPU

The scheme used for synchronizing the FXU and the FPU is explained using Figure
2.4. Both units have six instruction-prefetch buffers (IPBs), which allow the branch
processing unit to get ahead of the FXU and the FPU. IPBs on both sides keep the
same instructions at all times. In the FXU, there are two instruction decode registers,
D0 and D1. One of these registers feeds the execute stage of the FXU. On the FPU
side, there are two pre-decode registers, PD0 and PD1, which keep a mirror image of
D0 and D1, respectively. PD0 and PD1 feed the rename registers, R0 and R1.

Instructions are fetched four at a time from the ICU. If these include appropriate
instructions for both the FXU and the FPU, an instruction to each is issued in the
same clock cycle. Both the issued instructions are kept until the rename stage because
one of the instructions can be a fixed-point arithmetic operation while the other may
be a floating-point load or store which is considered a fixed-point operation but needs
renaming of registers. After the rename stage, the floating-point instructions go
through the decode stage and the two execution cycles FP1 and FP2.

Four instruction-decode buffers (IDB0 - IDB3) are present in the FPU, which can
buffer floating-point instructions if the floating-point pipeline is busy. Thus the FXU
does not need to wait for the FPU to finish executing the next instruction(s) if there
are no dependencies. A counter present in the FXU is used to synchronize the FXU
and the FPU by keeping track of the relative positions of an instruction in the FXU
and the FPU. If the FXU is working on an instruction, the permissible values of the
counter allow the FPU to look down up to six subsequent instructions for renaming.
Conversely, if the FPU is busy and the IDBs become full, the FXU is allowed to

execute up to two subsequent instructions.
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