INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.
Increasing the noticeability of warnings: Effects of pictorial, color, signal icon and border

Young, Stephen Lee, M.A.

Rice University, 1992
RICE UNIVERSITY

INCREASING THE NOTICEABILITY OF WARNINGS:
EFFECTS OF PICTORIAL, COLOR, SIGNAL ICON AND BORDER

by

STEPHEN L. YOUNG

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

MASTER OF ARTS

APPROVED, THESIS COMMITTEE:

Kenneth R. Laughery
Professor of Psychology, Director

John W. Brelsford, Jr.
Professor of Psychology

David M. Lane
Professor of Psychology

Houston, Texas
May, 1992
ABSTRACT

INCREASING THE NOTICEABILITY OF WARNINGS:
EFFECTS OF PICTORIAL, COLOR, SIGNAL ICON AND BORDER

by

STEPHEN L. YOUNG

Because of the importance of noticeability on subsequent comprehension and compliance to warnings, guidelines suggest increasing the salience or conspicuity of warnings. Surprisingly, little research has examined different methods of increasing the noticeability of warnings. The current research orthogonally manipulated four salience variables (pictorial, color, signal icon and border) to determine their effect on the salience of warnings. Subjects viewed 96 simulated alcohol labels on a computer, half with a warning and half without. Subjects indicated whether or not a warning was on the label and response latencies were recorded. The results showed that all four salience features produced significantly faster response times compared to their absence. More detailed analyses showed interactions between the four salience manipulations. These results demonstrate that salience features can enhance the noticeability of warning information. Moreover, it is clear that these salience manipulations interact with each other and that they should not be used indiscriminately.
ACKNOWLEDGEMENTS

For sharing their time and expertise, I would like to express my appreciation to the members of my thesis committee: Dr. Kenneth R. Laughery Sr., Dr. John W. Brelsford Jr. and Dr. David M. Lane. Their comments, criticisms and editing skills have proven to be invaluable resources throughout this research. I am also grateful to Dr. Michael S. Wogalter for spurring my interest in the field of human factors. I would also like to thank Keith A. Laughery and Elizabeth Horn for assisting in the data collection. Finally, thanks go out to my family for supporting me as they have throughout my education.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1. PICTORIAL</td>
<td>4</td>
</tr>
<tr>
<td>1.2. COLOR</td>
<td>7</td>
</tr>
<tr>
<td>1.3. SIGNAL ICON</td>
<td>9</td>
</tr>
<tr>
<td>1.4. BORDER</td>
<td>11</td>
</tr>
<tr>
<td>1.5. CONCLUSIONS</td>
<td>12</td>
</tr>
<tr>
<td>2. METHOD</td>
<td>12</td>
</tr>
<tr>
<td>2.1. SUBJECTS</td>
<td>12</td>
</tr>
<tr>
<td>2.1.1. DEMOGRAPHIC INFORMATION</td>
<td>12</td>
</tr>
<tr>
<td>2.1.2. DRINKING PATTERNS</td>
<td>14</td>
</tr>
<tr>
<td>2.2. MATERIALS</td>
<td>14</td>
</tr>
<tr>
<td>2.3. PROCEDURE</td>
<td>17</td>
</tr>
<tr>
<td>3. RESULTS</td>
<td>18</td>
</tr>
<tr>
<td>3.1. ANALYSIS OF SUBJECT’S PERFORMANCE</td>
<td>18</td>
</tr>
<tr>
<td>3.1.1. MISSES</td>
<td>18</td>
</tr>
<tr>
<td>3.1.2. FALSE ALARMS</td>
<td>20</td>
</tr>
<tr>
<td>3.2. ANALYSIS OF SUBJECT DIFFERENCES</td>
<td>20</td>
</tr>
<tr>
<td>3.3. ANALYSIS OF SALIENCE FEATURES</td>
<td>22</td>
</tr>
<tr>
<td>3.4. ANALYSIS OF INDIVIDUAL SALIENCE CONDITIONS</td>
<td>24</td>
</tr>
<tr>
<td>3.5. ANALYSIS OF THE DISTRACTER LABELS</td>
<td>25</td>
</tr>
<tr>
<td>3.6. ANALYSIS OF PRESENTATION ORDER</td>
<td>27</td>
</tr>
<tr>
<td>4. DISCUSSION</td>
<td>32</td>
</tr>
<tr>
<td>4.1. PICTORIALS</td>
<td>32</td>
</tr>
<tr>
<td>4.2. COLOR</td>
<td>33</td>
</tr>
<tr>
<td>4.3. SIGNAL ICON</td>
<td>34</td>
</tr>
<tr>
<td>4.4. BORDER</td>
<td>35</td>
</tr>
<tr>
<td>4.5. CONCLUSIONS</td>
<td>35</td>
</tr>
<tr>
<td>5. REFERENCES</td>
<td>37</td>
</tr>
<tr>
<td>APPENDIX A THE 96 STIMULUS LABELS</td>
<td>46</td>
</tr>
</tbody>
</table>
LIST OF TABLES

TABLE 1 PERCENT MISSES AND FALSE ALARMS FOR EACH SUBJECT WITH OUTLIERS IN BOXES 19
<table>
<thead>
<tr>
<th>FIGURE</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DISTRIBUTION OF AGE IN SUBJECT POPULATION</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>LABEL DIVIDED INTO "ZONES"</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>EXAMPLE LABEL WITH A WARNING IN ZONE 3</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>BORDER BY ICON INTERACTION FOR MISSES</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>PICTORIAL BY ICON INTERACTION FOR MISSES</td>
<td>21</td>
</tr>
<tr>
<td>6</td>
<td>COLOR BY ICON INTERACTION</td>
<td>23</td>
</tr>
<tr>
<td>7</td>
<td>PICTORIAL BY COLOR BY ICON INTERACTION</td>
<td>24</td>
</tr>
<tr>
<td>8</td>
<td>COMPARISON OF THE INDIVIDUAL CONDITIONS COLLAPSED ACROSS LOCATION</td>
<td>25</td>
</tr>
<tr>
<td>9</td>
<td>DISTRIBUTION OF RESPONSES OVER TIME</td>
<td>27</td>
</tr>
</tbody>
</table>
INTRODUCTION

Ultimately, the goal of warnings is to promote safe behaviors and to modify or eliminate unsafe ones (e.g., Peters, 1984). There are two major facets of warnings which determine whether they will be effective in accomplishing this goal: the content and the format. The content of a warning includes the meaning of the message being conveyed and the wording used to convey it. In its currently accepted form, the content of a warning takes the following form: 1) a signal word, 2) a hazard statement, 3) a consequence statement, and 4) instructions on how to avoid the hazard (Cunitz, 1981; FMC, 1991; Peters, 1984; Wogalter, Godfrey, Fontenelle, Desaulniers, Rothstein & Laughery, 1987). On the other hand, the format of a warning entails the different methods used to deliver the content of the message to the target and it includes such things as layout, shape, media, and salience features. Even though it is the content that eventually determines the effectiveness of a warning, aspects of the format are fundamentally important in ensuring that the content is noticed and read by the target. Intuitively, format is important for the simple reason that, if the warning is not noticed and read, the quality or propriety of the content is irrelevant.

The use of different formats to attract attention is predicated on the notion that human attention can be controlled by the stimulus in a "bottom-up" fashion. While attention can be directed by a person ("top-down"), there are instances when the stimulus itself controls the direction of attention automatically. In this case, it has been suggested that "preattentive" processing takes place (Neisser,
1967; Triesman, 1986). Specifically, the stimulus is processed before direct attention is focussed on it. However, in order to draw attention in a preattentive manner, the stimulus object (foreground) must have certain properties (perceptual "primitives") which differentiate it from its background. Only certain combinations of foreground and background primitives will produce this "pop out" effect. The nature (or the existence) of primitives is not an issue in this study. Primitives have merely been suggested as a mechanism for the process which is relevant to the present study: the fact that a stimulus can draw attention to itself, even apart from the conscious direction on the part of the target (Banks & Prinzmetal, 1976; Olson & Atneave, 1970; Prinzmetal & Banks, 1977). Without relating to specific primitives, it is suggested that salience features can be used to draw attention automatically to relevant (warning) information in the manner described above.

Based on this reasoning, guidelines for warning design have suggested the use of various salience features in order to draw attention to warnings (FMC, 1991; Westinghouse Electric Corporation, 1981). However, it appears as if many of these features are being selected and used in warning systems according to an implicit, "more is better" philosophy of warning design. Specifically, this "philosophy" suggests that any salience feature is better than none at all, and that any two features are better than one, and so on. While in many cases, the use of this type of reasoning produces the expected (positive) results, it does not do so in all cases. For example, borders are frequently used to draw attention to information. According to the "more is better" approach, the use of a border would invariably
be better than nothing at all. However, several studies have demonstrated that this is not the case. For example, Anderton and Cole (1982) and Laughery and Young (1991a) showed that the presence of a border was actually detrimental to performance when compared to its absence. Moreover, this was only a single salience feature that was shown to violate "common sense" notions of ways to increase noticeability. When the interactions between many different, simultaneously employed features are considered, the question of validating the effectiveness of these manipulations becomes an empirical one and not one of simply trying to validate the obvious or validate common sense.

The reason that this intuitive approach appears to be at work in the design of warning systems is that there is so little research examining the ability of different salience features to attract attention compared to their absence. There is a correspondingly small amount of research dealing with the interactions between different features. At the same time, many different methods of increasing the noticeability of warnings are being used (e.g., pictorials, signal icons, borders, color). Granted, this lack of research dealing with the noticeability of warnings may be due in part to the fact that many of these features perform functions other than simply attracting attention. For example, one of the primary purposes of pictorials is to convey warning information redundantly in iconic form. Thus, much of the research dealing with pictorials has focused on their interpretability (e.g., Keller, 1972; Lerner & Collins, 1980, 1983; Mackett-Stout & Dewar, 1981). However, pictorials also have the ability to attract attention, and it is this facet that
has received less research interest. For other salience features, this problem is more pronounced and their ability to attract attention has all but been ignored in the literature. Therefore the present research examines four methods which are frequently recommended and commonly used to increase the salience of warning information: pictorial, color, signal icon and border. Each of these four methods will be examined individually to determine if they attract attention compared to their absence. Also, the interactions between these features will be examined in an attempt to determine how the different features act in concert. A review of the existing literature for each method is presented below.

Pictorial

As noted above, pictorials were designed primarily to provide warning information in a non-verbal form. Pictorials convey warning information to those who cannot read its associated verbal message (e.g., illiterates or non-English readers), while providing redundancy of the warning message to those who can read (see Dreyfuss, 1970; Hodgkinson & Hughes, 1982; Krampen, 1965; McCarthy & Hoffmann, 1977). Because of this primary benefit, pictorial research has revolved largely around facets other than their attention-getting properties. Most of this research deals with the ability of people to identify and interpret the pictorials in the absence of any verbal message (e.g., Cahill, 1975; Collins, Lerner & Pierman, 1982; Laux, Mayer & Thompson, 1989; Mayer & Laux, 1989).

However, it was suggested early on that pictorials might have many different beneficial properties, not the least of which was to attract attention (Dorris &
Purswell, 1978). Since then, several studies have demonstrated the beneficial effects of pictorials on noticeability of warnings. Friedmann (1988) and Otsubo (1988) used behavioral criteria to test the effectiveness of pictorials in safety systems. Otsubo exposed subjects to power saws with warnings attached to them. The warnings were manipulated with regard to the presence vs. absence of a pictorial (as well as the presence vs. absence of a verbal warning). Similarly, Friedmann exposed subjects to liquid drain opener or furniture polish that contained warnings manipulated with regard to pictorials. Neither study found a reliable effect of pictorial on behavior, but both demonstrated that pictorials attracted the attention of subjects. Friedmann found that 88% of the subjects noticed the warning with a pictorial, while as many as 61% saw the warning with a pictorial in Otsubo's experiment. However, both studies do not report the percentages of subjects who saw the warning in the control condition (with no pictorial), leaving the magnitude of this feature's effect on noticeability unclear. The trend in both studies was for pictorials to be associated with increased noticeability.

Using a memory criterion, Young and Wogalter (1988, 1990) manipulated the presence vs. absence of pictorials in instruction manual warnings for two different products (a gas-powered electric generator and an electric oven). After exposure to one of the manuals, subjects were given a recall test of the 8 warnings to which they were exposed. Results demonstrate that memory for the warnings was greater for the conditions with pictorials than for those without them. This
finding was attributed to the increased noticeability afforded to the warnings that were paired with pictorials. However, research has demonstrated that pictorials may have qualitatively different effects on memory than verbal material (Childers, Heckler & Houston, 1986; Childers & Houston, 1984). Also, the redundancy of the pictorial with its associated verbal message may have contributed to this result (see Baggett & Ehrenfeucht, 1981; Garner, 1974). While it is likely that the increased noticeability provided by the pictorials had an impact on the findings observed by Young and Wogalter (1988; 1990), their findings cannot be explained entirely by this aspect of the warning.

The previous studies did not measure the effect of pictorials on attention directly. They used behavioral and memory criterion from which effects on attention were inferred. However, other, more direct dependent measures have been employed to determine the effect of pictorials on the noticeability of warnings. For example, Laughery and Young (1991a) presented subjects with simulated alcohol labels, half of which contained a warning and half of which did not. The dependent measure was the latency to determine whether or not a warning was present on the label. The warnings were manipulated in various ways, but one of the variables was the presence vs. absence of a pictorial. The results showed that warnings with a pictorial were located more quickly than warnings without them. Pictorials produced the greatest improvement in performance of all the salience features examined in this study. An even more direct measure of attention was assessed by Laughery and Young (1991b). Here, the authors sub-
jected the same stimuli used by Laughery and Young (1991a) to eye-scan analysis by examining subjects eye movement patterns over the label's visual field. The results demonstrated that pictorials not only attracted attention but that they also decreased the time it took for subjects to determine if the target material was or was not a warning.

This research on warning pictorials is supported by related research on symbols for road signs. Several studies in this domain (e.g., Ells & Dewar, 1979; King, 1975; King & Tierney, 1970; Plummer, Minarch & King, 1974) have presented symbols and verbal messages to subjects and measured response latency to determine whether or not the material was road- or driving-related. These studies demonstrate that the symbols were recognized more quickly as being road-related material and that they were interpreted more completely under brief-exposure circumstances than their associated verbal message. Moreover, Jacobs, Johnston and Cole (1975) demonstrated that road symbols were legible at half the distance of related verbal statements, suggesting that symbols not only attract attention, but can be interpreted more quickly than verbal material. Taken together, all of the pictorial research suggests that pictorials can attract attention. However, part of their ability to increase the noticeability of warnings is rooted in their ability to cue the target that the information they are looking at is a warning and not some other, irrelevant material.

Color

Color is another method commonly used to increase the noticeability of
warnings and it is used to convey different levels of hazard (red = "high hazard", orange = "mid-level hazard", and yellow = "low hazard"; Collins, 1983; FMC, 1991; Lozano, 1980). Several studies have demonstrated that these distinctions between colors are used by people in the "real world". For instance, Bresnahan and Bryk (1975) showed that red color was associated with greater hazard than other colors. Similarly, Wheatley (1977) showed that, as the color of a warning became more red, subjects "hostility" ratings of the warning increased. These "hostility" ratings could be considered ratings of hazardousness or dread associated with the warning. Although people make distinctions between colors, these differences do not always produce measurable effects on relevant perceptions of risk (Leonard & Matthews, 1986).

The differential effects of the colors is important with regard to the notice-ability of warnings. A large body of general research on color suggests that it is the number of different colors in a visual field that ultimately determines the effectiveness of any single color as a cue (e.g., Carter & Cahill, 1979; Christ, 1975; Jones, 1962). In these studies, the specific color used is less important than the number of colors that are used simultaneously with the color cue. While the number of colors employed remains an important consideration in warning re-search (Ells, Dewar & Milloy, 1980; Phillips & Noyes, 1980), the warning do-main has particular colors which are "better" than others in attracting attention (see Easterby & Hakiel, 1977). For example, Adams and Lien-tsang (1981) showed that the addition of red color to a warning sign increased the chance that
it would be noticed by subjects. The effect of the color red has been demonstrated in more general research as well (Bloomfield, 1979). Similarly, an amber motorcycle warning light (Ramsey & Brinkley, 1977) and a red Slow Moving Vehicle emblem (Asper, 1972) were associated with better detection performance than were similar features in different colors. Not all studies have shown beneficial effects of specific colors (e.g., Loewenthal & Riley, 1980), but most point to the fact that it is not simply the number of colors used that is important, but it is also the nature of the colors themselves.

These findings support the notion that color can be used effectively to increase the chance that a warning will be seen. Specifically, they suggest that the color red, in the absence of many other competing colors, will prove helpful in increasing the noticeability of warning information.

Signal Icon

Signal icons have been a regular part of warning practices and standards in the last 20 years. Unlike any of the other features employed in this study, the signal icon has multiple components, each of which converge to make it a feature that attracts attention. These components include 1) a signal word, 2) a triangle with an exclamation point inside, as well as color and a surrounding border. Little research has examined the signal icon *in toto*, but those that have provide promising results. Laughery and Young (1991a, 199b) demonstrated that signal icons attract attention to their associated warning message. Warnings with signal icons were generally located and recognized as warning-related information more
quickly than were warnings without icons. The effect of the icons was generally less than that for pictorials or color, but it was significant nonetheless. The only other paper to examine the effect of signal icons on warnings was Zlotnik (1982), who found that the presence of icons in instructions significantly decreased task completion times and task errors. Although attention was not the main construct under investigation, it is likely that Zlotnik’s results can be explained in terms of the increased salience of the warnings which were paired with icons. A majority of the other papers employing signal icons in warnings have not manipulated icons as part of the experimental design (e.g., McCarthy, Horst, Beyer, Robinson & McCarthy, 1987). Rather, they were included simply because they were part of current warning standards put forth by ANSI (American National Standards Institute, 1987).

As stated earlier, the signal icon is composed of several components, each of which has been studied on its own. For example, Schneider (1977) demonstrated that subjects noticed and preferred warnings with a signal word (e.g., DANGER, POISON) more so than those without them. However, it may be the mere presence of a signal word, and not the specific signal word, that matters (Lehto & Miller, 1986; Miller & Lehto, 1984; Wogalter, Fontenelle & Laughery, 1985), although some semantic and affective differences have been observed between different signal words (e.g., Bresnahan & Bryk, 1975; Leonard, Hill & Karnes, 1989; Silver & Wogalter, 1989, 1991). There is also evidence to suggest that the triangle with the exclamation point affects attention on its own. This
symbol has been associated with high ratings of hazardousness (Bresnahan, 1985; Cochran, Riley & Douglass, 1981; Riley, Cochran & Ballard, 1982). Similarly, increased "hostility" scores (Wheatley, 1977) are also associated with increased "spikiness" of the associated warning symbols (as with triangles). These studies suggest that the individual components of a signal icon may have an impact on noticeability of warnings.

While there is not an overwhelming amount of research regarding the role of signal icons in attention to warnings, it is likely that the presence of icons will improve the noticeability of warnings relative to their absence. This suggestion is further supported by the effect of the individual components of the signal icon (the signal word and the triangle with the exclamation point) on hazard perceptions and attention.

Border

The final prominent method of increasing the salience of a warning message is the use of a surrounding border. Unlike the other features, there is virtually no research examining the effect of borders on noticeability. Of the research that does exist, no effect (Zlotnik, 1982) or negative effects of border (Laughery & Young, 1991a, 1991b) have been found. It is unclear why such a null effect of borders has been found in previous studies. Intuitively, it seems reasonable that borders should attract attention. Therefore, the present study includes a border manipulation in order to determine its effect on noticeability and to determine if there are any interactions between border manipulations and the other variables.
Conclusions

Some of these methods of increasing the salience of warnings have more empirical support than others. Intuition, as well as the prevalent use of these four methods in practice, suggest that any or all of them can increase the chance that a warning will be noticed. However, there are two major gaps in the literature: 1) a consensus about the effectiveness of each of these methods by themselves, and, more importantly, 2) knowledge of the possible interactions between these methods. In order to examine both aspects, the current research orthogonally manipulates these four salience features (pictorial, color, signal icon and border) in order to determine their effect on noticeability of warnings for simulated alcohol labels.

METHOD

Subjects

Seventy-two subjects were recruited from the Houston community by Telesurveys, Inc., an independent telephone survey company. Selection was made by random-digit dialing but an attempt was made to distribute subjects equally across ethnic group (black, hispanic and white), gender and age (less than 25 years old, between 26 and 40 years old and over 40 years old). Subjects were paid twenty-five dollars for participating. Aspects of the subject population in this experiment are discussed in the following two sections.

Demographic Information. Three demographic variables were used as the basis for subject selection (ethnic group, gender and age). Thirty-five subjects were male (49%) and 37 were female (51%). Twenty-four subjects were black
(33%), 25 were Hispanic (35%), and 23 were white (32%). The age distribution is presented in Figure 1. The mean age of the subjects is 34.0 years old ($SD = 13.19$) and the ages ranged from 18 to 77 years old. As stated above, the subjects were classified according to the three age ranges ("younger" = less than 25, "middle" = between 26 and 40, and "older" = over 40 years old). Twenty-one of the subjects were classified in the younger age group ($M = 22.0$ years old, $SD = 1.92$), while 36 subjects were grouped in the middle age category ($M = 32.2$ years old, $SD = 3.97$) and 15 were included in the older age category ($M = 55.2$ years old, $SD = 11.49$). The age categories were less evenly represented than was hoped, but the overall sample includes a wide range of ages (which was the primary purpose of including age as a selection variable).

Other demographic variables were assessed (such as yearly income and education), but these were not used as criteria for subject selection. Twenty-eight

![Histogram](image)

Figure 1. Distribution of age in subject population.
percent of the subject population made less than $5,000 a year, while 17% made
between $5,000-$10,000, 32% made between $10,000-$20,000, and 17% made
between $20,000-$30,000 a year. Six percent of the subjects made over $30,000
a year. Also, 44% of the subjects had a high school/GED background and 33%
had college degrees. Six percent of subjects had only an elementary education,
while 3% had completed graduate school.

Drinking Patterns. Several aspects of subject's drinking behaviors and
patterns were assessed. Eighty-six percent of the subjects in this study drank
alcohol. Of those that drank alcohol, most (60%) preferred beer compared to
wine (26%) or liquor (14%). Most of the subjects (52%) reported drinking about
2-3 times a week, with a majority of the rest (34%) reporting that they drank less
than once a month. Ten percent of the subjects drank 4-5 times a week and only
5% reported drinking on a daily basis. Subjects were asked how much they
generally consumed each time they drank. Most (52%) reported drinking only 1-
2 drinks (one beer, one glass of wine or one shot of liquor) per instance, while
31% drank 2-3 drinks and 17% drank more than 5 drinks per instance. There was
a moderate, but significant, tendency for subjects who drank more frequently per
week to also consume more drinks per instance \(r(62) = .349, p < .01 \). Fifty-
two percent of the subjects reported having seen the Government Warning on
alcohol containers prior to the experiment.

Materials

Ninety-six “alcohol labels” were constructed for fictitious beer, wine and
liquor products. Half of the labels contained a warning and half did not. The only warning employed in this study was the Government Warning mandated for alcohol containers in the U.S. as of November, 1989. The warning is as follows:

GOVERNMENT WARNING: (1) ACCORDING TO THE SURGEON GENERAL WOMEN SHOULD NOT DRINK ALCOHOLIC BEVERAGES DURING PREGNANCY BECAUSE OF THE RISK OF BIRTH DEFECTS. (2) CONSUMPTION OF ALCOHOLIC BEVERAGES IMPAIRS YOUR ABILITY TO DRIVE A CAR OR OPERATE MACHINERY, AND MAY CAUSE HEALTH PROBLEMS.

Each label (17.5 cm x 23.5 cm) contained 5 “zones” or block-areas that could contain information (see Figure 2). Zone 1 always contained the brand logo and Zone 2 was always printed vertically from top to bottom. Only Zones 2, 3 and 4 could contain the warning. Figure 3 shows an example label with a warning in Zone 3 (see Appendix A for the other labels). The non-warning information included material on the ingredients used, the importer, the brewery, nutritional

![Figure 2. Label divided into "zones".](image-url)
content, and bar code information. The labels were presented with SuperCard (Silicon Beach Software) on an Apple Macintosh IIcx with an Apple 33 cm RGB color monitor.

The warning was orthogonally manipulated in four ways. First, an associated pictorial was present to the left of the warning or it was absent. Second, the warning was printed in red (different color) or it was printed in black (same color). The color red was chosen because it has been shown to be very discriminable (Bloomfield, 1979) and is a "stereotype" color for hazards (Easterby & Hakiel, 1977). When color was used, the entire warning and everything associ-
ated with it was printed in red and nothing else on the label was red. Third, an icon was present above the warning or it was absent. Finally, a border was placed around the warning or the border was absent. The warning appeared in each of the three zones an equal number of times. This factorial combination (3x2x2x2x2) produced 48 different warning configurations. The 48 labels without warnings were manipulated in the same way as the labels with warnings, except a different non-warning icon and pictorial were used.

Procedure

Subjects were administered a reading test to determine their ability to read and understand English. They were then given a questionnaire to gain demographic information, as well as information regarding their knowledge, attitudes and beliefs concerning alcohol and alcohol consumption. If a subject scored below 50% on the reading test, the experimenter read the questionnaire aloud and recorded subject’s answers. After finishing the questionnaire, subjects viewed 96 simulated alcohol labels on the computer, one at a time. For each label, subjects indicated whether a warning was present by pressing a button labeled “Yes” (warning present) or a different button labeled “No” (warning absent). After pressing either button, the computer’s internal timer stopped and the screen turned white (blank) for 4 seconds. After 4 seconds, an “X” appeared in the middle of the screen, alerting the subject that the next label would appear within one second. Subjects were instructed to focus on the “X” until the subsequent label appeared and then to start searching for the warning. Each subject was presented
a different random order of the labels.

RESULTS

Analysis of Subject's Performance

The pattern of subject's responses to the labels was examined to determine the quality of their data. Specifically, hits/misses and false alarms/correct rejections were examined for each subject (see Table 1). The overall rate of misses and false alarms was low, with the exception of four subjects. Subjects 29 and 31 both had a high rate of misses and false alarms, suggesting that they were indiscriminate in their responding to both targets and distractors. Subjects 28 and 47, on the other hand, had a high rate of false alarms but a low rate of misses, suggesting that they responded that a warning was present for most of the labels (both targets and distractors). Because the data for these four subjects was suspect, their data were discarded from all the following analyses. With these subjects excluded, an analysis of misses and false alarms was conducted to determine if they were systematically related to any of the salience features.

Misses. The mean rate of misses over all the subjects was 1.70% (which translates to 0.816 misses per subject for the 48 labels that contained a warning). The miss data was examined in relation to the location of the warning (Zone 2, 3 or 4) and no effect of location was observed ($p > .05$). Another analysis of variance (ANOVA) was performed using the orthogonal manipulation of the four salience features. Again, only the labels with the warning present were included. The only significant effects were the border x icon [$F (1, 3248) = 13.54, p <$
Table 1. Percent misses and false alarms for each subject with outliers in boxes.

<table>
<thead>
<tr>
<th>Subject #</th>
<th>Misses</th>
<th>False Alarms</th>
<th>Subject #</th>
<th>Misses</th>
<th>False Alarms</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>0.0</td>
<td>2.1</td>
<td>37</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>02</td>
<td>0.0</td>
<td>2.1</td>
<td>38</td>
<td>2.1</td>
<td>0.0</td>
</tr>
<tr>
<td>03</td>
<td>0.0</td>
<td>0.0</td>
<td>39</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>04</td>
<td>0.0</td>
<td>4.2</td>
<td>40</td>
<td>0.0</td>
<td>2.1</td>
</tr>
<tr>
<td>05</td>
<td>0.0</td>
<td>0.0</td>
<td>41</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>06</td>
<td>2.1</td>
<td>0.0</td>
<td>42</td>
<td>2.1</td>
<td>0.0</td>
</tr>
<tr>
<td>07</td>
<td>0.0</td>
<td>2.1</td>
<td>43</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>08</td>
<td>8.3</td>
<td>0.0</td>
<td>44</td>
<td>4.2</td>
<td>2.1</td>
</tr>
<tr>
<td>09</td>
<td>0.0</td>
<td>0.0</td>
<td>45</td>
<td>4.2</td>
<td>2.1</td>
</tr>
<tr>
<td>10</td>
<td>6.2</td>
<td>4.2</td>
<td>46</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>11</td>
<td>2.1</td>
<td>0.0</td>
<td>47</td>
<td>2.1</td>
<td>47.9</td>
</tr>
<tr>
<td>12</td>
<td>0.0</td>
<td>2.1</td>
<td>48</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>13</td>
<td>4.2</td>
<td>2.1</td>
<td>49</td>
<td>4.2</td>
<td>0.0</td>
</tr>
<tr>
<td>14</td>
<td>2.1</td>
<td>0.0</td>
<td>50</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>15</td>
<td>0.0</td>
<td>0.0</td>
<td>51</td>
<td>0.0</td>
<td>2.1</td>
</tr>
<tr>
<td>16</td>
<td>0.0</td>
<td>0.0</td>
<td>52</td>
<td>8.3</td>
<td>0.0</td>
</tr>
<tr>
<td>17</td>
<td>8.3</td>
<td>2.1</td>
<td>53</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>18</td>
<td>2.1</td>
<td>4.2</td>
<td>54</td>
<td>6.2</td>
<td>0.0</td>
</tr>
<tr>
<td>19</td>
<td>0.0</td>
<td>2.1</td>
<td>55</td>
<td>2.1</td>
<td>0.0</td>
</tr>
<tr>
<td>20</td>
<td>0.0</td>
<td>0.0</td>
<td>56</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>21</td>
<td>0.0</td>
<td>4.2</td>
<td>57</td>
<td>4.2</td>
<td>0.0</td>
</tr>
<tr>
<td>22</td>
<td>0.0</td>
<td>2.1</td>
<td>58</td>
<td>2.1</td>
<td>4.2</td>
</tr>
<tr>
<td>23</td>
<td>0.0</td>
<td>2.1</td>
<td>59</td>
<td>0.0</td>
<td>2.1</td>
</tr>
<tr>
<td>24</td>
<td>0.0</td>
<td>8.3</td>
<td>60</td>
<td>4.2</td>
<td>0.0</td>
</tr>
<tr>
<td>25</td>
<td>2.1</td>
<td>8.3</td>
<td>61</td>
<td>2.1</td>
<td>0.0</td>
</tr>
<tr>
<td>26</td>
<td>2.1</td>
<td>2.1</td>
<td>62</td>
<td>6.2</td>
<td>4.2</td>
</tr>
<tr>
<td>27</td>
<td>0.0</td>
<td>0.0</td>
<td>63</td>
<td>6.2</td>
<td>4.2</td>
</tr>
<tr>
<td>28</td>
<td>0.0</td>
<td>37.5</td>
<td>64</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>29</td>
<td>27.1</td>
<td>43.8</td>
<td>65</td>
<td>6.2</td>
<td>6.2</td>
</tr>
<tr>
<td>30</td>
<td>0.0</td>
<td>4.2</td>
<td>66</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>31</td>
<td>33.3</td>
<td>54.2</td>
<td>67</td>
<td>2.1</td>
<td>0.0</td>
</tr>
<tr>
<td>32</td>
<td>0.0</td>
<td>0.0</td>
<td>68</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>33</td>
<td>0.0</td>
<td>0.0</td>
<td>69</td>
<td>4.2</td>
<td>2.1</td>
</tr>
<tr>
<td>34</td>
<td>0.0</td>
<td>0.0</td>
<td>70</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>35</td>
<td>2.1</td>
<td>2.1</td>
<td>71</td>
<td>2.1</td>
<td>0.0</td>
</tr>
<tr>
<td>36</td>
<td>0.0</td>
<td>0.0</td>
<td>72</td>
<td>0.0</td>
<td>2.1</td>
</tr>
</tbody>
</table>
.001] and the pictorial x icon \([F(1, 3248) = 4.18, p < .05]\) interactions (see Figures 4 and 5). The addition of an icon, when a border (Figure 4) or a pictorial (Figure 5) is absent, produces the expected decrement in misses. However, when either a border or pictorial is present, the addition of an icon produces an unexpected increase in misses. There were no other significant effects regarding misses.

False Alarms. The mean rate of false alarms was 1.40% (which translates into .672 false alarms per subject over the 48 labels without a warning). Analyses similar to those performed for misses were performed on false alarm data. There were no effects of location or of any of the salience features.

Analysis of Subject Differences According to Demographic Variables

Subject differences with regard to gender, ethnic group and age were examined with mean overall response times (collapsed across all conditions with a
warning) as the dependent measure. Since the age groupings (younger, middle and older) did not have comparable numbers of subjects, age was used as a covariate in a 2 (male vs. female) x 3 (black vs. hispanic vs. white) analysis of covariance (ANCOVA). Neither gender nor the covariate was significant (p's > .05). However, ethnic differences were revealed, $F(2.61) = 6.39, p < .01$. A post-hoc test of the Least Square Means showed that hispanics ($LSM = 3221$ ms) had significantly longer mean response times than either blacks ($LSM = 2232$ ms, $t = 2.59, p < .02$) or whites ($LSM = 1884$ ms, $t = 3.42, p < .01$). The difference between black and white subjects was not reliable. A 3 (ethnic group) x 2 (pictorial) x 2 (color) x 2 (signal icon) x 2 (border) ANOVA was then performed to determine the nature of the ethnic differences. Ethnic group did not interact with any of the salience manipulations, suggesting that they had the same effect for all three ethnic groups. It seems as if the overall times for the hispanics was simply

![Figure 5](image.png)

Figure 5. Pictorial by icon interaction for misses.
longer. One possible explanation for this finding is that these hispanic subjects had lower scores on the reading test administered prior to the experiment \((m = 54.6\% \text{ correct})\) than did the black \((m = 65.2\% \text{ correct}, p > .05)\) or white subjects \((m = 89.1\% \text{ correct}, p < .01)\). No other subject differences were found.

Analysis of the Salience Features

The next set of analyses examined differences between the orthogonally manipulated salience variables on response latencies (from the onset of the label to the response). Response latencies were standardized by subject so that each subject had a mean time of zero and a standard deviation of one. This data transformation was performed to eliminate the skew of the response latencies. Although technically this transformation violates an assumption of the analysis of variance (that the mean is not fixed), it is not expected that this violation will produce a noticeable effect (either negatively or positively) on the data. All the statistical tests described below use these standard scores, but mean response latencies (in milliseconds) are presented for clarity of interpretation. After standardization, scores were collapsed across location and a 2 (pictorial present vs. absent) x 2 (color present vs. absent) x 2 (icon present vs. absent) x 2 (border present vs. absent) within-subjects ANOVA was performed on the labels containing a warning. Warnings with a pictorial \((m = 2359 \text{ ms})\) produced significantly faster responses than warnings without a pictorial \((m = 2522 \text{ ms})\). \(F(1.67) = 15.64, p < .001\). Warnings printed in red \((m = 2354 \text{ ms})\) were located more quickly than warnings printed in black \((m = 2527 \text{ ms})\). \(F(1.67) = 8.40, p < .01\).
Warnings paired with an icon ($m = 2364$ ms) were located more quickly than warnings without an icon ($m = 2517$ ms), $F(1, 67) = 5.03, p < .03$. Finally, surrounding a warning with a border ($m = 2386$ ms) produced a significant decrease in response latencies compared to warnings without a border ($m = 2495$ ms), $F(1, 67) = 6.97, p = .02$.

A more detailed examination showed only two interactions between the four manipulations. The first was between color and icon, $F(1, 67) = 5.01, p < .03$ (see Figure 6). The addition of an icon improved performance when the warning was printed in black (from 2668 ms to 2385 ms, $p < .05$), but when the warning was printed in red, the addition of an icon produced a non-significant decrease in response latencies (from 2366 ms to 2342 ms, $p > .05$). The only other interaction was pictorial x color x icon, $F(1, 67) = 15.45, p < .001$ (see Figure 6).

Figure 6. Color by icon interaction.
Figure 7). When a pictorial was present, the addition of an icon facilitated performance regardless of the color of print (left half of Figure 7). However, when no pictorial was present (right half of Figure 7), the addition of an icon produced a significant improvement in performance, but only with black (no-color) print ($p < .05$). When red (color) print was used, there was a marginal decrement in response latencies with the addition of an icon ($p = .08$).

Analysis of the Individual Salience Conditions

The final analysis compared the individual conditions with the baseline warning (the warning with none of the salience manipulations, see Figure 8). The baseline warning produced the second longest latency ($m = 2793$ ms). The addition of a border to this produced a non-significant increase in response latencies.

![Graph showing the effect of pictorial and color on response latency](image)

Figure 7. Pictorial by color by icon interaction.
(p > .05), and it also produced the longest time of all the 16 conditions. Statistically reliable improvements in response times over the baseline were observed with the singular addition of an icon (m = 2348 ms, p < .001) and color (m = 2431 ms, p < .01). However, the addition of a pictorial to the baseline produced only a marginal decrease in response latencies (p = .08). The use of all four salience features (m = 2067) produced the greatest improvement over the baseline, F(1, 67) = 32.22, p < .001.

Analysis of the Distractor Labels

A four-way within-subjects ANOVA, similar to the one performed for the

![Graph](image)

Figure 8. Comparison of the individual conditions collapsed across location.
labels with a warning present, was performed on the distractor labels (the ones without a warning). Since the distractors were manipulated in the same way as the actual warnings, it was of interest to determine if the distractor salience features would aid subjects in determining that the highlighted information was not a warning. It was expected that the distractor pictorial and icon would aid subjects since their content alone could cue subjects that the information was not a warning. The border and color manipulation were not expected to affect response latencies since, upon finding the information subjects would have to examine it further to determine whether or not it was warning information. The results did not support this hypothesis. The presence of a distractor icon ($m = 3935$ ms) did produce shorter response latencies compared to its absence ($m = 4165$ ms), $F(1, 71) = 6.81, p < .02$. However, the presence of pictorial ($m = 4208$ ms) produced longer latencies compared to its absence ($m = 3892$ ms), $F(1, 71) = 6.56, p < .02$, as did the border manipulation ($m = 4221$ ms and $m = 3880$ ms respectively), $F(1, 71) = 5.29, p < .03$. There was no effect of color, $p > .05$. It should be noted that the analysis of distractors is somewhat difficult to interpret. Subjects may have been drawn to highlighted information and determined that it was not a warning. They then may have continued to search the label in other locations for warning information. Thus, termination of search may not have been dependent on the salience features as it is in the warning-present conditions. The nature and presence of distractor salience features may not have affected response latencies in any interpretable way.
Analysis of Presentation Order

Subjects may have gained information about the warning and the salience features in early trials that may have helped them in later trials. Thus, response latencies were examined as a function of presentation order. The presentations were initially divided into thirds and the first and last third were compared. No difference was found between these two sets, \(p > .05 \). Since learning would likely have occurred rather quickly (at least in fewer than 32 trials), the presentations were divided into twelve groups of eight trials each (see Figure 9). These were then analyzed using a Dunnett two-tailed test with the first eight trials serving as the "control". No reliable differences were found between the first set of eight trials and any other set, \(p's > .05 \). The same analyses were subsequently per-

![Graph showing distribution of responses over time with standard deviation bars.](image)

Figure 9. Distribution of responses over time (all trials with standard deviation bars).
formed on data with the warning present only and then with the warning absent only. No effects of order were found. In all, none of the analyses suggest that learning in the earlier trials aided subjects in the later trials. This is not to say that such learning did not take place; only that this learning did not generally produce significant reductions in response latencies in later trials.

DISCUSSION

In an early study of warning effectiveness (Godfrey, Rothstein & Laughery, 1985), the importance of format was demonstrated. The authors placed a sign near a water fountain which warned not to drink from the fountain because the water was contaminated. This sign had no effect on behavior. Another sign, with the same content, was then created in which the format was altered. This "enhanced" sign was made larger and it was manipulated with different salience features. Under the same environmental conditions, this sign affected people's willingness to drink from the water fountain. This study demonstrated the independence of format and content by showing that format could affect behavioral measures apart from the content of it associated message. These results also demonstrate that a warning's effectiveness is determined, initially, by the ability of the format to draw attention to the message.

However, it should not be inferred that a warning will be effective if only it is seen. Many research articles have made the mistake of assuming that, since a warning cannot be effective unless it is noticed, it will be effective if only it is noticed. The implicit assumption of this kind of research is that noticeability is
the primary (if not only) criterion for warning effectiveness. In almost all cases with this kind of research, the content of the warning is completely ignored and the findings are attributed entirely to the influence of format.

One example of this is Otsubo (1988), who manipulated the presence vs. absence of a pictorial (a salience feature designed to attract attention to its associated verbal message) and measured actual behavior in response to this manipulation. She found that the presence of the pictorial had no significant effect on behavior compared to the absence of the pictorial. From this she concluded that pictorials do not affect behavior. However, according to the data, more subjects noticed the warning with the pictorial than the warning with no pictorial. Thus, the salience feature attracted attention to itself and to its associated warning as one would expect. A reasonable explanation for the lack of an effect of pictorials on behavior is that the content of the warning was not adequate. Unfortunately, no mention was made regarding the role of content in this warning which instructed subjects to wear gloves when operating a circular saw. It is possible that subjects believed that the glove would not protect them from the saw blades, or it is possible that some subjects thought this form of protective equipment might make the situation more dangerous (the gloves could get caught in the saw and drag their hand into the path of the blade). In any event, subjects were not motivated to comply with the warning. This finding is most likely due to the inadequacy of the content and not to the format, as the author suggests.

From the studies presented above it is clear that content and format can be
completely independent of one another, yet still have an effect on precautionary behavior. These studies demonstrate that both variables must be considered individually when designing warnings. It is important that warnings be presented in a way that optimizes the chance that they will be seen and it is equally important that the warnings have adequate content, in order to inform and motivate the target once the warning is noticed and read. The purpose of the present study was to examine the effect of a particular format variable (specifically, salience features) on the noticeability of warnings. This study examines only the format aspect of warnings. This is important when considering these results because some of the salience features used in this study (specifically, pictorials, signal icons, and to a lesser extent, color) attract attention but they also convey information in and of themselves. Although all the facets of a particular salience feature should be taken into account when selecting them for use in a warning system, this study deals only with their ability to increase the chance that a warning will be seen.

Thus, making recommendation about which features or combinations of features to choose for a warning system is not entirely straightforward. If noticeability is the criterion, then this study clearly demonstrates that all four of these salience feature can be used to attract attention. This study confirms previous research showing that pictorials, color and signal icons can increase the chance that a warning will be seen. This study also demonstrates that borders attract attention to warning information compared to their absence. However, this study
also demonstrated the presence of interactions between the salience manipulations, which makes selection of different combinations a bit more difficult. While the main effects of the four features seem to validate the "more is better" philosophy, the interactions told a somewhat different story. For instance, the main effect of signal icon suggested that the addition of an icon would be generally beneficial to noticeability. However, the color by icon interaction showed that the addition of an icon had no effect when color was present (collapsed across the other variables). Moreover, the addition of an icon produced detrimental effects when no pictorial was present and when color was present (the pictorial by color by icon interaction). Thus, main effects become less meaningful when the interactions are considered. Also, when examining the individual salience feature conditions (Figure 8), it can be seen that the fastest mean recognition time was found for the warning with all four features. However, several other conditions had latencies which were very close to this one. In some cases, it may be more feasible (both because of economic or space considerations) to use one of these other groups of features.

However, when considering application of these findings to real-world labels, the limitations of the current research must be kept in mind. Limitations regarding the individual salience manipulations are presented under their respective heading (below), but two general ones may be presented here. First, these "labels" were presented by a computer and thus were not real labels at all. A label metaphor was used only to make the stimuli more "reasonable" or realistic.
Therefore, it could be said that these results do not apply to real-world alcohol containers. Since there are no actual alcohol labels which employ these manipulations orthogonally, their effect for actual container labels must to be inferred from the existing research. Given that the present findings confirm previous research (which used different stimuli), it is expected that these results are valid and will apply to real-world labels. Second, this research deals with recognition time as a measure of noticeability, which is merely one component of warning effectiveness. Other important considerations include readability, comprehension, etc. These kinds of issues are not addressed in the current research. Thus, it is suggested that noticeability should not be the only criterion by which a warning is selected for use.

Pictorials

Pictorials were shown to have a beneficial effect on noticeability with these stimuli, supporting previous research (Laughery & Young, 1991a, 1991b). However, it should be noted that one pictorial was used in this study and it represented only one of many possible content areas with regard to alcohol hazards. While the content of the pictorial may not have made as much (or any) difference in this study, it would most likely influence results if measures other than noticeability were examined. Again, this is a content issue. Pictorials are special, in that they convey information, and this aspect of the feature is really more important than its ability to attract attention. This study demonstrated that the pictorial could increase the salience of warning information, but the selection of a pictorial should
be based solely on the quality and propriety of its content. The increased notice-
ability afforded by a pictorial should be considered a secondary effect which is a
natural and inevitable result of using a pictorial. Specifically, all pictorials will
likely attract attention equally well, but a pictorial should not be used unless one
exists or can be created which adequately represents (in pictorial form) the con-
tent of its associated verbal warning.

Color

Color also improved performance relative to its absence. The findings
regarding color in this study should not be taken as a blanket-suggestion that
warnings should be printed in red and not black. Although red has been shown to
be a highly discriminable color that is often associated with warnings, the effect
of color found here is probably due to the fact that the color warning was the only
red item in the visual display. Previous research has shown that the total number
of colors in a visual field, as well as the number of different colors, determines the
effectiveness of color as a cue (Carter & Cahill, 1979). Thus, similar findings
may be observed with other colors, given the same circumstances. While it was
suggested in the introduction that the color red may have special influence on
attention, this was not examined in the present study. Other colors might have
produced similar results, but it would not really make much difference since red,
orange and yellow are almost universally accepted colors for safety information.
If these colors attract attention compared to their absence, then examination of
different potential warning colors is not really important. What future research
should consider is the ability of red warnings to attract attention in a more color-saturated environment. Like with real alcohol labels, the presence of many different colors and the presence of a lot of clutter (i.e., Godfrey et al., 1991) may reduce the ability of this feature to attract attention to warning information.

Signal Icon

The use of a signal icon improved performance compared to its absence. The signal word “Warning” was used in this study. Other signal words are frequently used in the warnings domain (Danger, Caution, Note, etc.). While is has been shown that there are different cognitive and affective response to different signal words, it is not likely that the use of a different one would have affected these results. However, selection of a signal word should not be done based on their potential effect on noticeability. The signal word *may* attract attention and it may not, but its primary purpose is to convey information regarding the level of hazard that its associated warning contains. Selection of a signal word should be based solely on this content aspect of the warning. Also, it was suggested in the introduction that the use of the triangle with the exclamation point was one facet of a signal icon’s ability to affect noticeability. The relative contribution of the signal word, the triangle, the icon’s border, etc. were considered as one unit and the importance of any of these individual features cannot be determined by anything in this study. More detailed analyses *might* be able to ascertain the effect of each of the components, but this may not be very informative. The fact is that the signal icon attracted attention compared to its absence and they should be used for
this reason alone.

Border

The ability of the border to improve response times in this study is contrary to previous research showing no effect or even negative effects of border manipulations (Laughery & Young, 1991a; Zlotnik, 1982). However, it should be noted that border produced a *non-significant* improvement in response latencies when the times were not standardized by subject. Only after standardization did the significant effect of border appear. The scores were standardized in order to determine the effect of the salience features regardless of individual differences between subjects. That is, a person who can see well and who is a "fast" responder, etc. may have faster overall time than someone who cannot see very well and who is a "slow" responder. At the same time, the border may have helped both subjects equally well when compared to their mean response time. This is what was found in this study. Thus, with the standardized times, it is clear that borders increase the noticeability of warnings regardless of any subject attributes that may affect the subject’s ability to notice warnings (i.e., their eyesight, etc.).

Conclusions

It is clear that the four salience manipulations used in the present study can affect the noticeability of warnings. However, study of the interactions between the features is necessary when combination of them are going to be used. Also, selection of different features needs to be made with consideration of the content as well as the format. For the reasons stated above, careful thought must be given
to the balance between different ways of conveying information (content: both verbally and pictorially) and different ways to deliver that information (format).
REFERENCES

Lozano, R. D. (1980). The visibility, colour and measuring requirements of road

Human Factors Society.

Young, S. L., & Wogalter, M. S. (1990). Effects of conspicuous print and picto-
rial icons on comprehension and memory of instruction manual warnings.

Human Factors, 32, 637-649.

APPENDIX A
GUIDE TO THE 96 LABELS

<table>
<thead>
<tr>
<th>LABEL #</th>
<th>WARNING</th>
<th>LOCATION</th>
<th>BORDER</th>
<th>PICTORIAL</th>
<th>ICON</th>
<th>COLOR</th>
<th>PAGE #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PRESENT</td>
<td>ZONE 2</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>49</td>
</tr>
<tr>
<td>2</td>
<td>PRESENT</td>
<td>ZONE 2</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>PRESENT</td>
<td>ZONE 2</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>51</td>
</tr>
<tr>
<td>4</td>
<td>PRESENT</td>
<td>ZONE 2</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>52</td>
</tr>
<tr>
<td>5</td>
<td>PRESENT</td>
<td>ZONE 2</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>53</td>
</tr>
<tr>
<td>6</td>
<td>PRESENT</td>
<td>ZONE 2</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>54</td>
</tr>
<tr>
<td>7</td>
<td>PRESENT</td>
<td>ZONE 2</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>55</td>
</tr>
<tr>
<td>8</td>
<td>PRESENT</td>
<td>ZONE 2</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>56</td>
</tr>
<tr>
<td>9</td>
<td>PRESENT</td>
<td>ZONE 2</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>57</td>
</tr>
<tr>
<td>10</td>
<td>PRESENT</td>
<td>ZONE 2</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>58</td>
</tr>
<tr>
<td>11</td>
<td>PRESENT</td>
<td>ZONE 2</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>59</td>
</tr>
<tr>
<td>12</td>
<td>PRESENT</td>
<td>ZONE 2</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>60</td>
</tr>
<tr>
<td>13</td>
<td>PRESENT</td>
<td>ZONE 2</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>61</td>
</tr>
<tr>
<td>14</td>
<td>PRESENT</td>
<td>ZONE 2</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>62</td>
</tr>
<tr>
<td>15</td>
<td>PRESENT</td>
<td>ZONE 2</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>63</td>
</tr>
<tr>
<td>16</td>
<td>PRESENT</td>
<td>ZONE 2</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>64</td>
</tr>
<tr>
<td>17</td>
<td>PRESENT</td>
<td>ZONE 2</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>65</td>
</tr>
<tr>
<td>18</td>
<td>PRESENT</td>
<td>ZONE 3</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>66</td>
</tr>
<tr>
<td>19</td>
<td>PRESENT</td>
<td>ZONE 3</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>67</td>
</tr>
<tr>
<td>20</td>
<td>PRESENT</td>
<td>ZONE 3</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>68</td>
</tr>
<tr>
<td>21</td>
<td>PRESENT</td>
<td>ZONE 3</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>69</td>
</tr>
<tr>
<td>22</td>
<td>PRESENT</td>
<td>ZONE 3</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>70</td>
</tr>
<tr>
<td>23</td>
<td>PRESENT</td>
<td>ZONE 3</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>71</td>
</tr>
<tr>
<td>24</td>
<td>PRESENT</td>
<td>ZONE 3</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>72</td>
</tr>
<tr>
<td>25</td>
<td>PRESENT</td>
<td>ZONE 3</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>73</td>
</tr>
<tr>
<td>26</td>
<td>PRESENT</td>
<td>ZONE 3</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>74</td>
</tr>
<tr>
<td>27</td>
<td>PRESENT</td>
<td>ZONE 3</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>75</td>
</tr>
<tr>
<td>28</td>
<td>PRESENT</td>
<td>ZONE 3</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>76</td>
</tr>
<tr>
<td>29</td>
<td>PRESENT</td>
<td>ZONE 3</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>77</td>
</tr>
<tr>
<td>30</td>
<td>PRESENT</td>
<td>ZONE 3</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>78</td>
</tr>
<tr>
<td>31</td>
<td>PRESENT</td>
<td>ZONE 3</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>79</td>
</tr>
<tr>
<td>32</td>
<td>PRESENT</td>
<td>ZONE 3</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>80</td>
</tr>
<tr>
<td>33</td>
<td>PRESENT</td>
<td>ZONE 4</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>81</td>
</tr>
<tr>
<td>34</td>
<td>PRESENT</td>
<td>ZONE 4</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>82</td>
</tr>
<tr>
<td>35</td>
<td>PRESENT</td>
<td>ZONE 4</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>83</td>
</tr>
<tr>
<td>36</td>
<td>PRESENT</td>
<td>ZONE 4</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>84</td>
</tr>
<tr>
<td>37</td>
<td>PRESENT</td>
<td>ZONE 4</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>85</td>
</tr>
<tr>
<td>38</td>
<td>PRESENT</td>
<td>ZONE 4</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>86</td>
</tr>
<tr>
<td>39</td>
<td>PRESENT</td>
<td>ZONE 4</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>87</td>
</tr>
<tr>
<td>40</td>
<td>PRESENT</td>
<td>ZONE 4</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>88</td>
</tr>
<tr>
<td>41</td>
<td>PRESENT</td>
<td>ZONE 4</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>89</td>
</tr>
<tr>
<td>42</td>
<td>PRESENT</td>
<td>ZONE 4</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>90</td>
</tr>
<tr>
<td>43</td>
<td>PRESENT</td>
<td>ZONE 4</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>91</td>
</tr>
<tr>
<td>44</td>
<td>PRESENT</td>
<td>ZONE 4</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>92</td>
</tr>
<tr>
<td>45</td>
<td>PRESENT</td>
<td>ZONE 4</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>93</td>
</tr>
<tr>
<td>46</td>
<td>PRESENT</td>
<td>ZONE 4</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>94</td>
</tr>
<tr>
<td>47</td>
<td>PRESENT</td>
<td>ZONE 4</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>95</td>
</tr>
<tr>
<td>48</td>
<td>PRESENT</td>
<td>ZONE 4</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>96</td>
</tr>
<tr>
<td>LABEL #</td>
<td>WARNING</td>
<td>LOCATION</td>
<td>BORDER</td>
<td>PICTORIAL</td>
<td>ICON</td>
<td>COLOR</td>
<td>PAGE #</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>----------</td>
<td>--------</td>
<td>-----------</td>
<td>------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>49</td>
<td>ABSENT</td>
<td>ZONE 2</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>97</td>
</tr>
<tr>
<td>50</td>
<td>ABSENT</td>
<td>ZONE 2</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>98</td>
</tr>
<tr>
<td>51</td>
<td>ABSENT</td>
<td>ZONE 2</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>99</td>
</tr>
<tr>
<td>52</td>
<td>ABSENT</td>
<td>ZONE 2</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>100</td>
</tr>
<tr>
<td>53</td>
<td>ABSENT</td>
<td>ZONE 2</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>101</td>
</tr>
<tr>
<td>54</td>
<td>ABSENT</td>
<td>ZONE 2</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>102</td>
</tr>
<tr>
<td>55</td>
<td>ABSENT</td>
<td>ZONE 2</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>103</td>
</tr>
<tr>
<td>56</td>
<td>ABSENT</td>
<td>ZONE 2</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>104</td>
</tr>
<tr>
<td>57</td>
<td>ABSENT</td>
<td>ZONE 2</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>105</td>
</tr>
<tr>
<td>58</td>
<td>ABSENT</td>
<td>ZONE 2</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>106</td>
</tr>
<tr>
<td>59</td>
<td>ABSENT</td>
<td>ZONE 2</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>107</td>
</tr>
<tr>
<td>60</td>
<td>ABSENT</td>
<td>ZONE 2</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>108</td>
</tr>
<tr>
<td>61</td>
<td>ABSENT</td>
<td>ZONE 2</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>109</td>
</tr>
<tr>
<td>62</td>
<td>ABSENT</td>
<td>ZONE 2</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>110</td>
</tr>
<tr>
<td>63</td>
<td>ABSENT</td>
<td>ZONE 2</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>111</td>
</tr>
<tr>
<td>64</td>
<td>ABSENT</td>
<td>ZONE 2</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>112</td>
</tr>
<tr>
<td>65</td>
<td>ABSENT</td>
<td>ZONE 3</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>113</td>
</tr>
<tr>
<td>66</td>
<td>ABSENT</td>
<td>ZONE 3</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>114</td>
</tr>
<tr>
<td>67</td>
<td>ABSENT</td>
<td>ZONE 3</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>115</td>
</tr>
<tr>
<td>68</td>
<td>ABSENT</td>
<td>ZONE 3</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>116</td>
</tr>
<tr>
<td>69</td>
<td>ABSENT</td>
<td>ZONE 3</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>117</td>
</tr>
<tr>
<td>70</td>
<td>ABSENT</td>
<td>ZONE 3</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>118</td>
</tr>
<tr>
<td>71</td>
<td>ABSENT</td>
<td>ZONE 3</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>119</td>
</tr>
<tr>
<td>72</td>
<td>ABSENT</td>
<td>ZONE 3</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>120</td>
</tr>
<tr>
<td>73</td>
<td>ABSENT</td>
<td>ZONE 3</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>121</td>
</tr>
<tr>
<td>74</td>
<td>ABSENT</td>
<td>ZONE 3</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>122</td>
</tr>
<tr>
<td>75</td>
<td>ABSENT</td>
<td>ZONE 3</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>123</td>
</tr>
<tr>
<td>76</td>
<td>ABSENT</td>
<td>ZONE 3</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>124</td>
</tr>
<tr>
<td>77</td>
<td>ABSENT</td>
<td>ZONE 3</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>125</td>
</tr>
<tr>
<td>78</td>
<td>ABSENT</td>
<td>ZONE 3</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>126</td>
</tr>
<tr>
<td>79</td>
<td>ABSENT</td>
<td>ZONE 3</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>127</td>
</tr>
<tr>
<td>80</td>
<td>ABSENT</td>
<td>ZONE 3</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>128</td>
</tr>
<tr>
<td>81</td>
<td>ABSENT</td>
<td>ZONE 4</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>129</td>
</tr>
<tr>
<td>82</td>
<td>ABSENT</td>
<td>ZONE 4</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>130</td>
</tr>
<tr>
<td>83</td>
<td>ABSENT</td>
<td>ZONE 4</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>131</td>
</tr>
<tr>
<td>84</td>
<td>ABSENT</td>
<td>ZONE 4</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>132</td>
</tr>
<tr>
<td>85</td>
<td>ABSENT</td>
<td>ZONE 4</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>133</td>
</tr>
<tr>
<td>86</td>
<td>ABSENT</td>
<td>ZONE 4</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>134</td>
</tr>
<tr>
<td>87</td>
<td>ABSENT</td>
<td>ZONE 4</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>135</td>
</tr>
<tr>
<td>88</td>
<td>ABSENT</td>
<td>ZONE 4</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>136</td>
</tr>
<tr>
<td>89</td>
<td>ABSENT</td>
<td>ZONE 4</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>137</td>
</tr>
<tr>
<td>90</td>
<td>ABSENT</td>
<td>ZONE 4</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>138</td>
</tr>
<tr>
<td>91</td>
<td>ABSENT</td>
<td>ZONE 4</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>139</td>
</tr>
<tr>
<td>92</td>
<td>ABSENT</td>
<td>ZONE 4</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>140</td>
</tr>
<tr>
<td>93</td>
<td>ABSENT</td>
<td>ZONE 4</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>141</td>
</tr>
<tr>
<td>94</td>
<td>ABSENT</td>
<td>ZONE 4</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>142</td>
</tr>
<tr>
<td>95</td>
<td>ABSENT</td>
<td>ZONE 4</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>143</td>
</tr>
<tr>
<td>96</td>
<td>ABSENT</td>
<td>ZONE 4</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>144</td>
</tr>
</tbody>
</table>

97 "X" CARD 145
Mayer's Brew

In 1772, William Mayer established his first brewery in Burton-on-Trent, famous as a brewing town since the Middle Ages. William Mayer built his reputation on the excellence of his beers, a reputation which is jealously guarded by his successors and which you can appreciate now in this bottle of Mayer's Brew.

Every ingredient used is the very finest available.
Ingredients: water, barley malt, rice, yeast and hops.
Elephant Ale

12 fluid ounces

Brewed in Kenya from the Choicest Barley, Rice, Yeast and Hops. Imported by Wisdom Import Sales, Inc. Irvine CA

This is a handmade natural ale. There are no additives, only fine grains, brewer's yeast and crystal clear water. The fine layer of yeast in each bottle is a result of the Kvaesening process which produces carbonation naturally in the bottle.
Mountain Top
Premium Lager

Natural Ingredients
Natural Aging
Natural Carbonation

BREWED UNDER LICENSE OF
ANHEISER BUSCH U.S.A.
MILWAUKEE, WI ~ EDEN, NC
IRWINDALE, CA ~ FORT
WORTH, TX ~ FULTON, NY ~
ALBANY, GA

Every ingredient used is the finest available. They are combined and fermented in such a way as to give the fullest body and the cleanest, heartiest taste. Ingredients: Water, Barley Malt, Yeast, Rice, and Hops.
Warwick's Old English Ale

Brewed in England from the Choicest Barley, Rice, Yeast and Hops. Imported by Wisdom Import Sales, Inc. Irvine CA

In 1772, Trenton Warwick established his first Brewery in Burton-on-Trent, famous as a brewing town since the Middle Ages. Trenton Warwick built his reputation on the excellence of his Beers, a reputation which is jealously guarded by his successors and which you can appreciate now in this bottle of Warwick's Old English Ale.
Sun Parade Lager

Sun Parade is virtually hand-made in small batches with our famous commitment to traditional brewing methods. We use authentic top-fermenting yeast, a blend of the finest malted barleys, hops and pure water.
Imported from England by Scottish and Finca Cast
Importers, Co., Los Angeles California.

Every ingredient used is the finest available. They are combined and fermented in such a way as to give the fullest body and the cleanest,

Water, Barley, Malt, Yeast, Hops.

Back in the native North-East of England Finca Castale Brown Ale originated but on most evenings in Finca the local men leaving their horses in their local Geordie dialect, "I'm just gan doon the road to tak the do for a walk".

GOVERNMENT WARNING: (1) ACCORDING TO THE SURGEON GENERAL, WOMEN SHOULD NOT DRINK ALCOHOLIC BEVERAGES DURING PREGNANCY BECAUSE OF THE RISK OF BIRTH DEFECTS. (2) CONSUMPTION OF ALCOHOLIC BEVERAGES IMPAIRS YOUR ABILITY TO DRIVE A CAR OR OPERATE MACHINERY, AND MAY CAUSE HEALTH PROBLEMS.
WARNING

GOVERNMENT WARNING: (1) ACCORDING TO THE SURGEON GENERAL, WOMEN SHOULD NOT DRINK ALCOHOLIC BEVERAGES DURING PREGNANCY BECAUSE OF THE RISK OF BIRTH DEFECTS. (2) CONSUMPTION OF ALCOHOLIC BEVERAGES IMPAIRS YOUR ABILITY TO DRIVE A CAR OR OPERATE MACHINERY AND MAY CAUSE HEALTH PROBLEMS.
Brewed and Bottled by Road Breweries, Detroit, MI and Los Angeles, CA. Net Contents: Twelve Fluid Ounces. Non-Returnable and Recyclable Bottle. Serve Ice Cold.

Every ingredient used is the very finest available.

Ingredients: water, barley malt, rice, yeast and hops.
Stingray Lager

12 fluid ounces

Arthur Fitzpatrick brewed his first stout in the Keys in 1759: He found it robust, mellow, satisfying. Today a Fitzpatrick is still in charge. The true natural ingredients and the quality have not changed, nor has the verdict; robust, mellow, satisfying. You'll Agree!

Traditionally Brewed with the Finest Hops, Pure Water and Barley Malt.

Brewed by Stingray Breweries Limited. Key West's Oldest and Last Independent Brewery. Imported by All Brands Importer, New York, NY. U.S.A.
Imported from England
by Scottish and Fincaile Importers, Co. Los Angeles
California.

Every ingredient used is the finest available. They are combined and fermented in such a way as to give the fullest body and the cleanest, heartiest taste. Ingredients: Water, Barley Malt, Yeast, Rice, and Hops.
Wine has been with us since the beginning of civilization. It is the temperate, civilized, sacred, romantic mealtime beverage. Wine has been praised for centuries by statesmen, philosophers, and scholars. Wine in moderation is an integral part of our culture, heritage and the gracious way of life.
Dolerman’s Irish Ale

Twelve Fluid Ounces

Dolerman is virtually hand-made in small batches with our famous commitment to traditional brewing methods. We use authentic top-fermenting yeast, a blend of the finest malted barleys, hops and pure water.

Brewed and Bottled by Dolerman Breweries, Dublin, Ireland.
Dry Brewed and Cold Filtered. Brewed by our Unique Dry Brew Process from the Choicest Hops, Rice and Best Barley Malt.

With the finest natural ingredients and our exclusive DryBrew process, we brew and cold filter this beer to a smooth, clean taste producing a superior refreshing beer with no aftertaste.
American Eagle brand beer derives its unusual name from the 19th century when “steam” seems to have been a nickname for beer brewed on the West Coast of America under primitive conditions and without ice. The word “steam” may have referred to the pressure of natural carbonation developing in the beers.

American Eagle

12 oz. Lager

12 oz. Size
Average Analysis
Calories............140
Carbohydrates.....8.7
Protein..............0.9
Fats...............0.0*

*Same as our regular beer
Grasshopper Lager Light

12 Fluid Ounces

Average Analysis: 12 oz. size -
Calories 134; Carbohydrates, 12.4 grams; Protein, 1.1 grams; Fat, 0.0 grams.

Brewed and Bottled since 1719 at the
Belhaven Brewery Co., LTD., Dunbar
Scotland - Imported by: Inter
Floridana Inc. Orlando, FL 32804
WARNING

GOVERNMENT WARNING: 11: ACCORDING TO THE SURGEON GENERAL, WOMEN SHOULD NOT DRINK ALCOHOLIC BEVERAGES DURING PREGNANCY BECAUSE: (1) CONSUMPTION OF ALCOHOLIC BEVERAGES IMPAIRS YOUR ABILITY TO Feed A Baby OR OPERATE MACHINERY AND MAY CAUSE HEALTH PROBLEMS FOR THE BIRTH DEFECTS IN THE OFFSPRING.

WARNINGS

Warsteiner Light Ale

12 oz. size
Average Analysis
Calories...........140
Carbohydrates......6.7
Protein.............0.9
Fats................0.0
*Same as our regular beer

Imported by Warsteiner Importers
Agency: Denver, CO 80014
Brewed for You in West Germany
HOUSEMANN PALE ALE FULLY CAPTURES THE TRUE TASTE OF
NATURAL INGREDIENTS AND ITS DISTINGUISHED HOUSEMANN
RICHNESS ADDS MORE TO YOUR ENJOYMENT.

Housemann

Old Style Pale Ale

12 fluid ounces

Imported by Martlet
Importing Co. Inc., North
Hills, N.Y. 11042

Recyclable Aluminum

GOVERNMENT WARNING: (1) ACCORDING TO THE SURGEON
GENERAL, WOMEN SHOULD NOT DRINK ALCOHOLIC
BEVERAGES DURING PREGNANCY BECAUSE OF THE RISK OF
BIRTH DEFECTS. (2) CONSUMPTION OF ALCOHOLIC
BEVERAGES IMPAIRS YOUR ABILITY TO DRIVE A CAR OR
OPERATE MACHINERY AND MAY CAUSE HEALTH PROBLEMS.
Today anchor is one of the smallest and most traditional breweries in the world. San Francisco's famous anchor steam brand beer is unique, for our brewing process has evolved over many decades and is like no other in the world.

A Quality Ale
Imported from Canada

Century City Pilsner
12 fluid ounces

Contains only natural ingredients with no preservatives or additives

1 pint, 16 Fluid Ounces
(473 ml)

⚠️ WARNING

GOVERNMENT WARNING: (1) ACCORDING TO THE SURGEON GENERAL, WOMEN SHOULD NOT DRINK ALCOHOLIC BEVERAGES DURING PREGNANCY BECAUSE OF THE RISK OF BIRTH DEFECTS. (2) CONSUMPTION OF ALCOHOLIC BEVERAGES IMPAIRS YOUR ABILITY TO DRIVE A CAR OR OPERATE MACHINERY AND MAY CAUSE HEALTH PROBLEMS
Night Train
Express
12 Fluid Ounces

WARNING

GOVERNMENT WARNING: (1) ACCORDING TO THE SURGEON GENERAL, WOMEN SHOULD NOT DRINK ALCOHOLIC BEVERAGES DURING PREGNANCY BECAUSE OF THE RISK OF BIRTH DEFECTS. (2) CONSUMPTION OF ALCOHOLIC BEVERAGES IMPAIRS YOUR ABILITY TO DRIVE A CAR OR OPERATE MACHINERY, AND MAY CAUSE HEALTH PROBLEMS.
MacGuire's Old Style Lite

12 Fluid Ounces

Maguire Brewing Co. - Milwaukee, WI - Fort Worth, TX - Fulton, NY - Edent, NC - Albany, GA - Irwindale, CA.

Recyclable Aluminum

This is the Original Maguire's Beer. Nature's choicest products provide its prized flavor. Only the finest of hops and grains are used. Selected as America's Best in 1893.

Government Warning: (1) According to the Surgeon General, women should not drink alcoholic beverages during pregnancy because of the risk of birth defects. (2) Consumption of alcoholic beverages impairs your ability to drive a car or operate machinery, and may cause health problems.
America's Oldest Lager Beer
Established in the U.S. 1842
A Family Tradition for 2 Centuries

Marquee Pilsner
1/2 Fluid Ounces

There is nothing artificial in this product.
Brewed from water, barley malt, cereal grains, hops and yeast.

⚠️ WARNING
GOVERNMENT WARNING: (1) ACCORDING TO THE SURGEON GENERAL, WOMEN SHOULD NOT DRINK ALCOHOLIC BEVERAGES DURING PREGNANCY BECAUSE OF THE RISK OF BIRTH DEFECTS. (2) CONSUMPTION OF ALCOHOLIC BEVERAGES IMPAIRS YOUR ABILITY TO DRIVE A CAR OR OPERATE MACHINERY AND MAY CAUSE HEALTH PROBLEMS.
Eagle
Fine Pilsner

Born of Natural Ingredients
Smooth, Refreshing Beer. Natural Carbonation.

⚠️ WARNING
GOVERNMENT WARNING: (1) ACCORDING TO THE SURGEON GENERAL, WOMEN SHOULD NOT DRINK ALCOHOLIC BEVERAGES DURING PREGNANCY BECAUSE OF THE RISK OF BIRTH DEFECTS. (2) CONSUMPTION OF ALCOHOLIC BEVERAGES IMPAIRS YOUR ABILITY TO DRIVE A CAR OR OPERATE MACHINERY AND MAY CAUSE HEALTH PROBLEMS.
Since 1886
Brewed with Pure Spring
Water From the Country
of 1100 Springs

Old Abe Stout

IMPORTED BY
WALKER TRADING CO., LTD.
LOS ANGELES, CA 90021

CA REDEMPTION VALUE
Once small brewer crafted full-bodied distinctive American beer. Now the Boston Beer Company brings back craft-brewed beer. Following great-grandfather's own recipe, we use only the classic ingredients.

Sportsman's

Light Ale

[Image of people playing sports]

Imported from Pilsen by All Brand Importers, Inc.
Hartford CT. Beer brewed and bottled by brewery
Pilsner Urquell-Plzen/Pilsen.

We know of no other brewing process which costs so much to brew and age. Our exclusive Beechwood aging produces a taste, a smoothness and a drinkability you will find in no other beer at any price.

⚠️ WARNING ⚠️

GOVERNMENT WARNING: (1) ACCORDING TO THE SURGEON GENERAL, WOMEN SHOULD NOT DRINK ALCOHOLIC BEVERAGES DURING PREGNANCY BECAUSE OF THE RISK OF BIRTH DEFECTS. (2) CONSUMPTION OF ALCOHOLIC BEVERAGES IMPAIRS YOUR ABILITY TO DRIVE A CAR OR OPERATE MACHINERY AND MAY CAUSE HEALTH PROBLEMS.
Brewed and Bottled by the Boston Beer Company under special arrangement.

Brewed by our original process from the Choicest Hops, Rice and Best Barley Malt.

GREAT HORN ALE
12 FLUID OZ

WARNING

GOVERNMENT WARNING: (1) ACCORDING TO THE SURGEON GENERAL, WOMEN SHOULD NOT DRINK ALCOHOLIC BEVERAGES DURING PREGNANCY BECAUSE OF THE RISK OF BIRTH DEFECTS. (2) CONSUMPTION OF ALCOHOLIC BEVERAGES IMPAIRS YOUR ABILITY TO DRIVE A CAR OR OPERATE MACHINERY AND MAY CAUSE HEALTH PROBLEMS.
Ingredients: Water, Barley, Corn, Yeast, Hops Contains No Additives or Preservatives.

GOVERNMENT WARNING: (1) ACCORDING TO THE SURGEON GENERAL, WOMEN SHOULD NOT DRINK ALCOHOLIC BEVERAGES DURING PREGNANCY BECAUSE OF THE RISK OF BIRTH DEFECTS. (2) CONSUMPTION OF ALCOHOLIC BEVERAGES IMPAIRS YOUR ABILITY TO DRIVE A CAR OR OPERATE MACHINERY AND MAY CAUSE HEALTH PROBLEMS.
THOUROUGHBREAD

Light Pilsner

Beer Certificate
Based on an average analysis, contains:
Calories..98
Carbohydrates..3.5 grams
Fat..0.0 grams
Protein..0.8 grams

Brewed in strict accordance with the German "Reinheitsgebot" the German Purity Law of 1516.

GOVERNMENT WARNING: (1) ACCORDING TO THE SURGEON GENERAL, WOMEN SHOULD NOT DRINK ALCOHOLIC BEVERAGES DURING PREGNANCY BECAUSE OF THE RISK OF BIRTH DEFECTS. (2) CONSUMPTION OF ALCOHOLIC BEVERAGES IMPAIRS YOUR ABILITY TO DRIVE A CAR OR OPERATE MACHINERY AND MAY CAUSE HEALTH PROBLEMS
We use only the finest ingredients in the world's summer ale. We keep it light and refreshing for the rich complex flavors and our special recipe.

Brewed under license of Lowenbrau AG by Miller Brewing Company in USA.
Milwaukee, WI; Eden, NC; Irwindale, CA; Fort Worth, TX; Fulton, NY; Albany, GA.

WARNING

GOVERNMENT WARNING: (1) ACCORDING TO THE SURGEON GENERAL, WOMEN SHOULD NOT DRINK ALCOHOLIC BEVERAGES DURING PREGNANCY BECAUSE OF THE RISK OF BIRTH DEFECTS. (2) CONSUMPTION OF ALCOHOLIC BEVERAGES IMPAIRS YOUR ABILITY TO DRIVE A CAR OR OPERATE MACHINERY AND MAY CAUSE HEALTH PROBLEMS.
Traditionally brewed for smooth, light taste using the finest hops, grains, yeast and pure water. Exceptional Quality since 1908.

This is a handmade natural ale. There are no additives or preservatives. Only the finest barley malt, whole hops, brewer's yeast and crystal clear water. The fine layer of yeast in each bottle is a result of the Klaesening process, which produces carbonation naturally in the bottle.

Walker's Pale Ale
12 Fluid Ounces

Brewed and bottled by Spaten-Brau, Munich, W-Germany.
Imported by Spaten West, Inc.,
Brisbane CA 94005.

Government Warning: (1) According to the Surgeon General, women should not drink alcoholic beverages during pregnancy because of the risk of birth defects. (2) Consumption of alcoholic beverages impairs your ability to drive a car or operate machinery and may cause health problems.
Lion Head

Pilsner

This German beer is virtually hand-made with an exceptional respect for the
ancient art of brewing. The deep amber color, the thick creamy head, and the
flavor all testify to our traditional brewing methods.

Brewed exclusively from alpine water,
barley wheat, hops and yeast, in
accordance with the famous Bavarian
Reinheitsgebot (Purity Law) of 1516.

Brewed and bottled by Spaten-
Brau, Munich, W-Germany.
Imported by Spaten West, Inc.,
Brisbane CA 94005.

⚠️ WARNING
GOVERNMENT WARNING: (1)
ACCORDING TO THE SURGEON
GENERAL, WOMEN SHOULD NOT
DRINK ALCOHOLIC BEVERAGES
DURING PREGNANCY BECAUSE
OF THE RISK OF BIRTH DEFECTS
(2) CONSUMPTION OF
ALCOHOLIC BEVERAGES IMPAIRS
YOUR ABILITY TO DRIVE A CAR OR
OPERATE MACHINERY AND MAY
CAUSE HEALTH PROBLEMS
Island Tropics
Wine Cooler
14 Fluid Ounces

Every ingredient used is the finest available. They are combined and fermented in such a way as to give the sweetest, fruitiest, most Island Tropic Tast available.

Natural Ingredients
Natural Aging
Every ingredient used is the very finest available.
Ingredients: water, barley malt, rice, yeast and hops.
New Castle
90's Stout

Stout Brewed and Cold Filtered. Brewed by our Unique Stout Brew Process from the Choicest Hops, Rice and Best Barley Malt.

Brewed under license of Anheiser Busch U.S.A.
Milwaukee, WI - Eden, NC
Irwindale, CA - Fort Worth, TX - Fulton, NY - Albany, GA
Since 1831, Young's have produced many Stouts including Mellow, Sweet, Family, Dry and Oatmeal. Young's Oatmeal Stout was brewed until 1950 when local demand declined. Today, the original tradition is alive from one of London's last remaining independent brewers.
Brewed to Highest Quality Standards with pure water, choicest hops, finest barley malt, corn and cultured yeast.

Old Style Lager

12 Fluid Ounces

A Gettelman Brewery Milwaukee, WI - Fort Worth, TX - Fulton, NY - Eden, NC - Albany, GA - Irwindale, CA - Union Made - Recyclable Aluminum

GOVERNMENT WARNING: (1) ACCORDING TO THE SURGEON GENERAL, WOMEN SHOULD NOT DRINK ALCOHOLIC BEVERAGES DURING PREGNANCY BECAUSE OF THE RISK OF BIRTH DEFECTS. (2) CONSUMPTION OF ALCOHOLIC BEVERAGES IMPAIRS YOUR ABILITY TO DRIVE A CAR OR OPERATE MACHINERY AND MAY CAUSE HEALTH PROBLEMS

12 oz. Size
Average Analysis
Calories...............140
Carbohydrates.....6.7
Protein.............0.9
Fats...............0.0
*Same as our regular beer
This is a handmade natural ale. There are no additives, only fine grains, brewer's yeast and crystal clear water. The fine layer of yeast in each bottle is a result of the Krausening process which produces carbonation naturally in the bottle.
In 1776, Trueman, Warwicke established his first Brewery in the Borough of Aylesbury in the county of the Boro's in England, where the story of the brewery and its reputation was founded by the name of George Washington's Private Stock Pilsner.

Traditionally brewed for smooth, light taste using the finest hops, grains, yeast and pure water. Exceptional Quality since 1908.
We use only the choice ingredients: two-row summer barley, Hallertau malt, and
Teutonic hops, aged yeast and pure water. We add Irish hops at the beer ages to create the
11th complex character. No other American beer uses this time-consuming process.

Since 1886
Brewed with Pure Spring
Water From the Country
of 1100 Springs

VOLCANO
MALT LIQUOR

GOVERNMENT WARNING: (1)
ACCORDING TO THE SURGEON
GENERAL, WOMEN SHOULD NOT
DRINK ALCOHOLIC BEVERAGES
DURING PREGNANCY BECAUSE
OF THE RISK OF BIRTH DEFECTS.
(2) CONSUMPTION OF
ALCOHOLIC BEVERAGES IMPAIRS
YOUR ABILITY TO DRIVE A CAR OR
OPERATE MACHINERY AND MAY
CAUSE HEALTH PROBLEMS

Miller Brewing Co. - Milwaukee WI -
Fort Worth, TX - Fulton, NY - Edent, NC -
Albany, GA - Irwindale, CA.
Recyclable Aluminum
Spider's Web
12 Fluid Ounces

Born of Natural Ingredients
Smooth, Refreshing Beer
Natural Carbonation.
Natural Aging

Imported by Martlet Importing Co. Inc., North Hills, N.Y. 11042

Recyclable Aluminum

GOVERNMENT WARNING: (1) ACCORDING TO THE SURGEON GENERAL, WOMEN SHOULD NOT DRINK ALCOHOLIC BEVERAGES DURING PREGNANCY BECAUSE OF THE RISK OF BIRTH DEFECTS. (2) CONSUMPTION OF ALCOHOLIC BEVERAGES IMPAIRS YOUR ABILITY TO DRIVE A CAR OR OPERATE MACHINERY AND MAY CAUSE HEALTH PROBLEMS.
Every ingredient used is the very finest available.

Heisman Light Ale

Brewed by Sports Breweries Limited. Key West's Oldest and Last Independent Brewery. Imported by All Brands Importer, New York, NY. U.S.A.

WARNING

GOVERNMENT WARNING: (1) ACCORDING TO THE SURGEON GENERAL, WOMEN SHOULD NOT DRINK ALCOHOLIC BEVERAGES DURING PREGNANCY BECAUSE OF THE RISK OF BIRTH DEFECTS. (2) CONSUMPTION OF ALCOHOLIC BEVERAGES IMPAIRS YOUR ABILITY TO DRIVE A CAR OR OPERATE MACHINERY AND MAY CAUSE HEALTH PROBLEMS.
With the finest natural ingredients and our exclusive DayBrew process, we
brewed and cooled this beer to a smooth, clean taste producing a superb
Light Ale.

Pilgrim's Bounty

Brewed and canned by
Anheuser-Busch, Inc., St. Louis,
Mo.

Recyclable Aluminum
In 1776, Thomas Worwck established his first brewery in Boston, Massachusetts. He had built his reputation on the excellence of his Beer. A reputation which is further endorsed by the presence and which you can appreciate now in this bottle of Worwck's Old English Ale.

Every ingredient used is the finest available. They are combined and fermented in such a way as to give the fullest body and the cleanest, heartiest taste. Ingredients: Water, Barley Malt, Yeast, Rice, and Hops.

Natural Ingredients
Natural Aging
Natural
Maryland
Seaside Lager

Dry Brewed and Cold Filtered. Brewed by our Unique Dry Brew Process from the Choicest Hops, Rice and Best Barley Malt.

Brewed under license of
Anheuser Busch U.S.A.
Milwaukee, WI ~ Eden, NC
Irwindale, CA ~ Fort Worth, TX ~ Fulton, NY ~ Albany, GA

Best in British North East of England, this British Ale is affectionately known as 'The Dog'. Nobody is sure as to how this restaruant originated but on most evenings you can hear the man singing his sea shanties. He's been doing that on this island since before his mates in their local Greene Kingvisited. On a hot day down the road, a sea dog or a walk...
Imported from England
by Scottish and Finca.
Importers, Co. Los Angeles
California.

Natural Ingredients
Natural Aging
Natural Carbonation

Festiva
Cerveza

☆ QUALITY

Every ingredient used is the very finest available.
Ingredients: water, barley malt, rice, yeast and hops.
American Pride Lager
12 Fluid Ounces

Brewed by Kiwi Breweries Limited. Key West's Oldest and Last Independent Brewery. Imported by All Brands Importer, New York, NY. U.S.A.

Every ingredient used is the very finest available.
Ingredients: water, barley malt, rice, yeast and hops.
Compass is virtually hand-made in small batches with our famous commitment to traditional brewing methods. We use authentic ingredients and nothing else.

In 1772, Trenton Warwick established his first Brewery in Burton-on-Trent, famous as a brewing town since the Middle Ages. Trenton Warwick built his reputation on the excellence of his Beers, a reputation which is jealously guarded by his successors and which you can appreciate now in this bottle of Warwick’s Old English Ale.

Brewed in England from the Choicest Barley, Rice, Yeast and Hops. Imported by Wisdom Import Sales, Inc. Irvine CA
Brewed to the highest quality standards with pure water, choicest hops, finest barley malt, corn and cultured yeast.

Average Analysis: 12 oz. size -
Calories 134; Carbohydrates, 12.4 grams; Protein, 1.1 grams; Fat, 0.0 grams.

Miller Brewing Co. - Milwaukee WI -
Fort Worth, TX - Fulton, NY - Edent, NC -
Albany, GA - Irwindale, CA.

Recyclable Aluminum
Erdemann's Crown Ale

16 Fluid Ounces

This beer fully captures the true taste of natural ingredients and its distinguished Asahi richness adds more to your enjoyment.

Brewed and canned by Anheuser-Busch, Inc., St. Louis, Mo.

Recyclable Aluminum
Horseshoe

This is the Original Harper Beer. Nature's choicest products provide its prized flavor. Only the finest of hops and grains are used. Selected as America's Best in 1893.

Imported by Martlet Importing Co. Inc., North Hills, N.Y. 11042

Recyclable Aluminum
Contains only natural ingredients with no preservatives or additives

1 pint, 16 Fluid Ounces
(473 ml)

Hightower's Light Ale

Every ingredient used is the very finest obtainable
Ingredients: water, barley, malt, rice, yeast and hops.
New Haven's Century Pilsner

There is nothing artificial in this product. Brewed from water, barley malt, cereal grains, hops and yeast.

12 oz. Size
Average Analysis
Calories..........140
Carbohydrates....6.7
Protein............0.9
Fats...............0.0*

*Same as our regular beer
Today Anchor is one of the smallest and most traditional breweries in the world. San Francisco's famous Anchor Steam brand beer is unique, for our brewing process has evolved over many decades and is like no other in the world.

Texas Homestyle Bock

This is the Original Harper Beer. Nature's choicest products provide its prized flavor. Only the finest of hops and grains are used. Selected as America's Best in 1893.

America's Oldest Lager Beer
Established in the U.S. 1842
A Family Tradition for 2 Centuries
Captain Hook's Premium Lager
12 Fluid Ounces

A Quality Ale
Imported from Canada

There is nothing artificial in this product.
Brewed from water, barley malt, cereal grains, hops and yeast.
We use only the freshest ingredients: two-row summer barley, Hallertau malted and fermentation hops,ager yeast and pure water. We add fresh hops and double brew to create the rich, complex character. No other American beer uses this time-consuming process.

Harriman's Fine Pilsner

Since 1886
Brewed with Pure Spring Water From the Country of 1100 Springs

Beer Certificate
Based on an average analysis,
contains: Calories:.98 Carbohydrates:3.5 grams Fat:0.0 grams Protein:0.8 grams
We know of no other cooling process which costs so much to make and age. Our exclusive Island aging produces a taste, a sweetness and a drinkability you will find in no other cooler at any price.

Imported by Paradise Importers
Agency: Denver, CO 80014
Made for You in the Virgin Islands
Traditionally brewed for smooth, light taste using the finest hops, grains, yeast and pure water. Exceptional Quality since 1908.

Brewed and Bottled since 1719 at the Bellhaven Brewery Co. LTD., Dunbar Scotland - Imported by: Inter Floridana Inc. Orlando, FL 32804
Once small brewers created full-bodied distinctive African beers. Americans have since lost the true taste of great beer. Now, the African Beer Company brings back craft-brewed beer. We use only the classic ingredients.

Royal Court
Malt Liquor
12 Fluid Ounces

Brewed by our original process from the Choicest Hops, Rice and Best Barley Malt.

Brewed and Bottled at Abidjan, Ivory Coast, Africa by Solibra Imported by Highland Distributing Company Inc. Houston, TX
Brewed under the personal supervision of the Brewmaster. Thirty-seven individual brewing steps assure absolute quality.

Brewed exclusively from alpine water, barley wheat, hops and yeast, in accordance with the famous Bavarian Reinheitsgebot (Purity Law) of 1516.

Born of Natural Ingredients
Smooth, Refreshing Beer
Natural Carbonation,
Natural Aging
Tradition Mountain Chablis

Every ingredient used is the finest available. They are combined and aged in such a way as to give the fullest bouquet and the cleanest, mellowest taste.

The Tradition Mountain Chablis is aged and fermented from the Gallo wine country in Sonoma California. This area is renowned for grapes which give this wine its distinctive taste and aroma.
Lake Shore Light Ale

8 fluid ounces

Brewed and canned by Anheuser Busch, Inc., St. Louis, Mo.
Recyclable Aluminum

Average Analysis: 12 oz. size - Calories 134; Carbohydrates, 12.4 grams; Protein, 1.1 grams; Fat, 0.0 grams.

Every ingredient used is the very finest obtainable
Ingredients: water, barley, malt, rice, yeast and hops.
Tarantula

Malt Liquor

This is the Original Lager. Nature's choicest products provide its prized flavor. Only the finest of hops and grains are used. Selected as America's Best in 1893.

Every year, over 200,000 tons of recyclable aluminum is carelessly littered across this country. This aluminum is not recycled and contributes to massive waste of natural resources. Please Don't Litter.
Haffney's
White
Zinfandel
1988

Contains only natural ingredients with no preservatives or additives

750 Milliliters

Aged and Bottled since 1719 at the Haffney Winery Co., LTD., Dunbar Scotland - Imported by Inter Floridana Inc. Orlando, FL 32804

Brewed to the Highest Quality Standards with pure water, choicest hops, finest barley malt, corn and cultured yeast.
Snow Leopard Beer

Every ingredient used is the very finest obtainable.
Ingredients: water, barley, malt, rice, yeast and hops.

☆ QUALITY
Each 12 oz can, based on an average analysis, contains: 96 calories, 2.8 grams Carbohydrates, 0.9 grams Protein, 0.0 grams Fat. Contains no additives or Preservatives. Recyclable Aluminum.
Lady Liberty
Pale Ale

Natural Ingredients
Natural Aging
Natural Carbonation

Imported from England
by Scottish and Fincastle Importers, Co. Los Angeles California.

This is the Original Lager. Nature's choice of products provide it the
flavored flavor. Only the finest of hops and grains are used. Selected
as America's Best in 1993.

Each 12 oz can, based on an average
analysis, contains: 96 calories, 2.8 grams
Carbohydrates, 0.9 grams Protein, 0.0
grams Fat. Contains no additives or
Preservatives. Recyclable Aluminum
Brewed exclusively from alpine water, barley wheat, hops and yeast, in accordance with the famous Bavarian Reinheitsgebot (Purity Law) of 1516.

Traditionally brewed for smooth, light taste using the finest hops, grains, yeast and pure water. Exceptional Quality since 1908.
This special beer is designed and produced by the Old City Brewing Co., Austin, TX and is brewed under a special agreement with Spoetzl Brewery, Shiner Texas.
This is a handmade natural ale. There are no additives or preservatives, only the finest barley malt, whole hops, brewer's yeast and crystal clear water. The first layer of yeast in each bottle is a result of the Krausening process, which produces carbonation naturally in the bottle.
Ingredients: Water, Barley, Corn, Yeast, Hops. Contains No Additives or Preservatives.

Brewed under the personal supervision of the Brewmaster. Thirty-seven individual brewing steps assure absolute quality.
St. Patrick's Old Irish Ale

Brewed and Bottled by the Boston Beer Company under special agreement, Pittsburgh, PA. For Information about this special beer write: The Boston Beer Company, The Brewery, Germania Street, Boston, MA 02130.
Three Generation's Premium Wine
750 milliliters

Imported by Warsteiner Importers
Agency: Denver, CO 80014
Bottled for You in France

We use only the finest ingredients: two-row summer barley, Wardley hops, Satan yeast and pure water. We add fresh hops as the beer ages to create the rich, complex character. No other American beers use this time-consuming process.

This Wine is virtually hand-made in small batches with our famous commitment to traditional aging methods. We use authentic ingredients and nothing else.

[Quality Star]
Every ingredient used is the very finest available.
Ingredients: water, barley malt, rice, yeast and hops.
Rattlesnake Beer

Brewed in England from the Choicest Barley, Rice, Yeast and Hops. Imported by Wisdom Import Sales, Inc. Irvine CA

12 Ounces

Each 12 oz can, based on an average analysis, contains: 96 calories, 0.2 grams Carbohydrates, 0.9 grams Protein, 0.0 grams Fat. Contains no additives or Preservatives. Recyclable Aluminum
Viking
Pilsner

This is the Original Lager. Nature's choicest products provide its prized flavor. Only the finest of hops and grains are used. Selected as America's Best in 1893.

12 oz. Size
Average Analysis
Calories...........140
Carbohydrates.....6.7
Protein.............0.9
Fats.................0.0
*Same as our regular beer

America's Oldest Lager Beer
Established in the U.S. 1842
A Family Tradition for 2 Centuries
This German beer is virtually hand-made with an exceptional respect for the ancient art of brewing. The deep amber color, the thick creamy head, and the rich flavor all testify to our traditional brewing methods.
This is a handmade natural ale. There are no additives or preservatives, only the finest barley malts, whole hops, brewe’s yeast and crystal clear water. The finest yeast in each bottle is a result of the krausening process, which produces carbonation naturally in the bottle.

Imported by Warsteiner Importers
Agency: Denver, CO 80014
Brewed for You in West Germany

The legacy of this Brewery goes back to 1719 when the ancestors of the firm’s present management developed a commercial brewing process which mandated the use of the finest malted barley, German Hops, and Dunbar well water.
Today Anchor is one of the smallest and most traditional breweries in the world. San Francisco’s famous Anchor Steam Beer is unique, for our brewing process has evolved over many decades.

Every year, over 200,000 tons of recyclable aluminum is carelessly littered across this country. This aluminum is not recycled and contributes to massive waste of natural resources. Please Don’t Litter.

Brewed under license of Lowenbrau AG by Miller Brewing Company in USA.
Milwaukee, WI; Eden, NC;
Irwindale, CA; Fort Worth, TX;
Fulton, NY; Albany, GA.
Ingredients: Water, Barley, Corn, Yeast, Hops.
Contains No Additives or Preservatives.

Average Analysis: 12 oz. size:
Calories 134; Carbohydrates, 12.4 grams; Protein, 1.1 grams; Fat, 0.0 grams.

Großbacher Premium Lager is one of Holland's leading beers. It is the result of over three centuries brewing experience. This exceptional draft beer is an all natural and unpasteurized product. The finest ingredients and the unique ten weeks aging process ensure the rich full-bodied lager taste.
Since 1831, Young's have produced many Stouts including Mellow, Sweet, Family, Dry and Oatmeal. Young's Oatmeal Stout was brewed until 1950 when local demand declined. Today, the original tradition is alive from one of London's last remaining independent brewers.
The first colonists to settle in Kentucky realized that the territory was ideal for the production of whisky. With its perfect mix of limestone springs and excellent corn producing soil, Kentucky was soon making whiskies that were in demand throughout the country. For more than 125 years, people have turned to Early Times for consistently smooth taste.
Artmer Fitzpatrick brewed his first stout in the Keys in 1759: He found it robust, mellow, satisfying. Today a Fitzpatrick is still in charge. The true natural ingredients and the quality have not changed, nor has the verdict; robust, mellow, satisfying. You'll agree!

Old Maple Hard Cider

Brewed under license of Lowenbrau AG by Miller Brewing Company in USA.
Milwaukee, WI; Eden, NC;
Irwindale, CA; Fort Worth, TX;
Fulton, NY; Albany, GA.

We use only the choicest ingredients; two-row barley malt, Hallertau Munich and Hallertau hops, pure yeast and pure water. We add fresh hops at the beer ages to create the rich complex character. No other American brew has this fine-tasting flavor.
This is a handmade natural ale. There are no additives or preservatives, only the finest barley malts, whole hops, brewer's yeast and crystal clear water. The finest layer of yeast in each bottle is a result of the Krausening process, which produces carbonation naturally in the bottle.

Consistently Superior in Quality for More than 200 Years. Family Brewed And Family Owned since 1775.

A Quality Beverage
Imported from Australia
Ale House Special Lager

Brewed and Bottles at Abidjan, Ivory Coast, Africa by Soliba Imported by Highland Distributing Company Inc. Houston, TX

This is a handmade natural ale. There are no additives or preservatives, only the finest barley malts, whole hops, brewer's yeast and crystal clear water. The finest layer of yeast in each bottle is a result of the Krausening process, which produces carbonation naturally in the bottle.

Brewed under the personal supervision of the Brewmaster. Thirty-seven individual brewing steps assure absolute quality.
This brew has been with us since the beginning of civilization. It is the temperate, civilized, sacred, romantic, medium beverage. It has been praised for centuries by statesmen, philosophers, and scholars. Beer in moderation is an integral part of our culture, heritage, and the gracious way of life.

We use only the classiest ingredients: two row summer grapes Hallertau Mittelfrueh and Tettnang pure water. We add fresh grapes as the wine ferments to create the rich complex character. No other great wine uses this time-consuming process.

Sebastian Rose Wine
750 ml.

Aged and Bottled by
Gallo Wineries, Sonoma, CA

Recyclable Glass
Country Life
Malt Beverage

Consistently Superior in Quality for More than 200 Years. Family Brewed And Family Owned since 1775.
This beer is made with the finest ingredients: fresh barley grains, pure water, and the purest natural spring water. This combination results in the finest, smoothest, heartiest taste that you can get in any beer.

Adam's Pale Ale

Miller Brewing Co. - Milwaukee WI -
Fort Worth, TX - Fulton, NY - Edent, NC -
Albany, GA - Irwindale, CA.

Recyclable Aluminium
Imported by Warsteiner Importers Agency: Denver, CO 80014
Brewed for You in West Germany

A Gettelman Brewery - Milwaukee, WI - Fort Worth, TX - Fulton, NY - Eden, NC - Albany, GA - Irwindale, CA - Union Made - Recyclable Aluminum