INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming.
While the most advanced technology has been used to photograph and reproduce
this document, the quality of the reproduction is heavily dependent upon the
quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or
notations which may appear on this reproduction.

1.

The sign or “target” for pages apparently lacking from the document
photographed is “Missing Page(s)”. If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages. This
may have necessitated cutting through an image and duplicating adjacent pages
to assure complete continuity.

. When an image on the film is obliterated with a round black mark, it is an

indication of either blurred copy because of movement during exposure,
duplicate copy, or copyrighted materials that should not have been filmed. For
blurred pages, a good image of the page can be found in the adjacent frame. If
copyrighted materials were deleted, a target note will appear listing the pages in
the adjacent frame.

. When a map, drawing or chart, etc., is part of the material being photographed,

a definite method of ‘“sectioning” the material has been followed. It is
customary to begin filming at the upper left hand corner of a large sheet and to
continue from left to right in equal sections with small overlaps. If necessary,
sectioning is continued again—beginning below the first row and continuing on
until complete.

. For illustrations that cannot be satisfactorily reproduced by xerographic

means, photographic prints can be purchased at additional cost and inserted
into your xerographic copy. These prints are available upon request from the
Dissertations Customer Services Department.

. Some pages in any document may have indistinct print. In all cases the best

available copy has been filmed.

Universi
Microfilms
International

30C N. Zeeb Road
Ann Arbor, M| 48106

Order Number 1334836

Automatic mesh generation of two-dimensional objects

Chang, Chih-Han, M.S.
Rice University, 1988

U-M-1

300 N. ZeebRd.
Ann Arbor, MI 48106

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy.
Problems encountered with this document have been identified here with a checkmark v .

N o o »x 0 p

© ®

10.
11,

12
13,
14,
18.
16.

Glossy photographs orpages ___

Colored illustrations, paper or print

Photographs with dark background _____

MNustrations are poorcopy _______

Pages with black marks, not original copy _____

Print shows through as there is text on both sides of page
Indistinct, broken or small print on several pages

Print exceeds margin requirements

Tightly bound copy with print lostin spine ____

Computer printout pages with indistinct print _____

Page(s) lacking when material received, and not available from school or
author.

Page(s) seem to be missing in numbering only as text follows.
Twopagesnumbered . Text follows.

Curling and wrinkled pages ______

Dissertation contains pages with print at a slant, filmed as received /

Other

UMI

RICE UNIVERSITY

AUTOMATIC MESH GENERATION OF TWO-DIMENSIONAL
OBJECTS

by
CHIH-HAN CHANG
A THESIS SUBMITTED

IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

MASTER OF SCIENCE

APPROVED, THESIS COMMITTEE:

Q- Qh,

Dr{ I. E. Akin, Professor
of Mechanical Engineering,
Director

D], B. Cheatham, Professor
of Mechanical Engineering

(PN,

Dr. J/ D. Warren, Assistant Professor
of Computer Science

Houston, Texas

April, 1988

Automatic Mesh Generation of Two-Dimensional Objects
Chih-Han Chang

ABSTRACT

An approach for the fully automatic generation of two-dimensional finite ele-
ment meshes is presented. The method follows from the basic concept of the quadtree
encoding technique with the specific modifications made to produce valid, user con-
trollable finite element meshes. The use of quadtree method for mesh generation was
pioneered by Shephard and Yerry, [6]. Our work is similar but more general than

theirs.

In this thesis after giving an overview of finite element method and mesh
requirements, the quadtree and modified quadtree techniques are introduced. Then
paper emphasizes on those algorithmic aspects of the mesh generator especially on
transferring quadtree code to finite mesh. Finally, examples are included to demon-

strate this technique and conclusions are given.

ACKNOWLEDGEMENT

Sincere appreciation is expressed to Dr. John Ed. Akin for his patient guidance
and helpful advice throughout. Also special thanks are offered to Dr. Cheatham and
Dr. Warren for being my thesis committeemen.

I am grateful to my parents for their encouragement and support. Most of all, 1
owe my wife, Wei-Chih, for her indulgence, patience and sacrifice during the prepara-

tion of this thesis.

Contents

Chapter 1 INTOQUCHIONceevuniininisrinisisenisineesisiesnisessessresssssssssssssssasessssssssssssass 1

Chapter 2 Finite Element Method and Mesh Requirements

2.1 Finite Element Methodccvveiiiiniimiiiiinsnieensnsiaisesssennnes 3

2.2 Mesh REQUITEIMENLS ...coeervevircirniriiinsiniirinissinsniinisiissssesssssssssssesssssssnsens 4
Chapter 3 Quadtree and Modified Quadtree Schemes

3.1 QUAGLTEEuvvveeerieesreniresseerenssesesessesesnsassrssessnsrasssssesisassessssssesessssssessosessssss 6

3.2 MoGified QUAGITEE ...vcevireereerererrecressesssserenensesassesssesassssasssssasssonssnessssssenenass 9

Chapter 4 The Algorithm of Automatic Mesh Generation

4.1 INITOQUCHION everereieierienienintiisestnresisstssesisseesessssesssessussearenssssssssssassncnss 12
4.2 Geometry Datacccviiunnisninicneiisisesiscssesssesisessacsesssresssssssessssesnes 13
4.3 Quadtree ENCOMING ...ccoeerireirenrnurircriiensensessenensesssasessosasssessosesnsssssessosseses 14
4.4 Inside Cell CONtNUILY ...ccccvereereeiemrenseereeseesaeseessessessssaesssesasssessesessesesssnns 19
4.5 Mesh GENerationecnvimncininnsnssssinitisenissnsnssssssssessosensnsssassesssnes 22

Chapter 5 Examples and Conclusions

5.1 EXAMPIES .ccrvrveriririeninsiiiensissinnsisessarassssesessssssasassessessssssssssasssssessssesssesssansans 29
5.2 CONCIUSIONS .ooviriiriniriiitensearienssssssnssesssssossssssassssssnsesessssesssesssssssssessassssesaess 35
Appendix A Cord Approximation for Arc EAZeceeccvvvrruvireererensennnrerneensiennns 37
Appendix B In/out Test of @ POLYZO0Ncccvveeerrrnrienensiennncnrnrnennesnseseesssssssssesenns 38

RETETEIICES .uvuirieiitiresriictisceticre et cesesssesessnsessaesasiosasssssessssasssesssnsssssmsonssssessssnnosnnsss 41

CHAPTER 1

Introduction

Since the introduction of finite element method (FEM), it advanced with the
improvement of computer hardware and software techniques. But creating the finite
element (FE) model is still the largest bottleneck in applying finite element analysis
(FEA) for problems, although all FEA programs require the same basic information.
Among the most time-consuming tasks in building a FE model is generating the FE
mesh. For regions with complex geometries, the requirements of closely approximat-
ing the boundaries together with the desirability of a fine mesh make it desirable to
use a large number of nodal points and elements. In early days, the specification of
the locations of such a large number of nodal points and elements was performed
manually and it was a time-consuming job in which there is a high probability of
human errors. These errors might be costly if not detected early in the analysis. To
minimize the data preparation time and the probability of error several schemes for

the automatic generation of much of the required data have been developed[1,2].

In mesh generation, the first generator for triangular mesh codes was written, but
never published, in 1958 by Mr. R. Maclean for an IBM 704 computer. Since then,
much of the information of mesh generation has been embedded in the vazious finite
element programs[4]. Today most meshing utilities in contemporary CAD systems
actually operate via mapping, or transformation, algorithms. The user must partition
the domain, which is represented by a collection of edges, into a set of topologically

simple subdomains in which meshes can be generated automatically. This approach is

unsuitable for a fully automatic meshing procedure because it depends on human gui-

dance. Instead other procedures, referred to as automatic mesh generator, [5-12],
must be used.

The core we will use for automatic mesh generation in this thesis is called the
quadtree method. The quadtree method is essentially an area modeling method used
for display on graphics terminals. Because the quadtree method is used for area
modeling, it can be used to represent any area. That is the basic requirement of a gen-
eral automatic mesh generation technique. In order for the mesh generation method to
work well with the adaptive analysis program, it is necessary that the mesh can be
easily refined in areas where more accuracy is desired. The quadtree method is very
good in local refinement. The use of quadtree method for automatic mesh generation
was pioneered by Shephard and Yerry, [6], and some modification was done by Kela
and Voelcker, [5]. Our work is similar but more general than theirs and the important

differences will be noted as we go along.

In the next chapter, we will briefly introduce the finite element method and the
requirements of mesh generated for FEA. This is followed by a chapter to introduce
the quadtree method and discuss the reason why it can not be used directly in mesh
generation then the modified quadtree method actually used in our mesh generator
will be introduced. The subsequent chapter explains the whole concept and technique

of our algorithm. In the last chapter, two examples and the conclusions will be given.

CHAPTER 2
Finite Element Method and Mesh Requirements

2.1 Finite Element Method

The finite element method is a numerical procedure for solving a continuum
problem with an accuracy acceptable to engineers. The idea behind this method is
quite simple and physically appealing.

One begins the analysis by approximating the region of interest by subdividing it
into a number of discrete sized subregions, finite elements, that are connected to asso-
ciated nodes which are the geometric points that define the elements. Within each
typical element the change of the dependent variable with location is approximated by
an interpolation function. This function is defined relative to the values of the depen-
dent variable at the nodes associated with the element. The original governing equa-
tion is then replaced with some type of equivalent integral statement. Next the
assumed interpolation functions are substituted into the governing integral form,
integrated, and combined with the results from other elements. This yields the
governing algebraic equations to be solved for the dependent variable at each node.
The behavior of the entire region is then determined by summing the contributions of

individual elements[1].

The nodes and elements are collectively referred to as a mesh. The process of

defining the size and shapes and location of the elements, defining the locations of

nodes, and assigning numbers to each node and element is called mesh generation[3].

2.2 Mesh Requirements
The major considerations of a layout of the finite element meshes can be sum-

marized by the following two statements:

1. The accuracy of the finite element solution is dependent on the element mesh

layout. A finer element mesh leads to a more accurate solution in areas of high
solution gradients.

2. The cost of the analysis becomes increasingly expensive as the nur*er of ele-
meniz in the mesh o~+:tinues to increase.

What this means is that the user must be able to layout a mesh that is just fine
enough that adequate solution accuracy is obtained. This requires the use of finer
meshes in areas of high solution gradients and coarse meshes in areas where the varia-
tion in the solution parameters is small. Thus the task of the finite element analyst is
to layout a mesh of elements of simple geometric shapes (triangles and quadrilaterals
for two dimensions) that approximates the problem geometry adequately and is prop-
erly graded within the object. Since the solution as a function of position is invariably
continuous, it is important that any change in element size should be gradual over the
region. It is also necessary that adjacent elements’ vertices are connected, i.e. there
are no overlapping and gaps between these adjacent elements. It is especially impor-
tant not to have the comer of one element lic on the side of a neighboring element
since special constraint methods would be needed to insure the continuity required for

a valid analysis.

It is especially noted that in our algorithm the way to control the element density
is to limit the size of the largest element and the smallest element in the whole domain
rather to control the element density in a particular region, although it can be done by
simple modifications. The reasons are: first, the input data can be much simpler;
second, the quadtree method has a tendency to create small elements (cells) in the
complicated boundary region which is the potential candidate for high solution gra-

dients.

CHAPTER 3
Quadtree and Modified Quadtree Schemes

3.1 Quadtree

The term quadtree is used to describe a class of hierarchical two-dimensional
data structures whose common property is that they are based on the principle of
recursive decomposition of space (Figure 3.1). The decomposition may be into equal
regions on each level (i.e., regular polygons and termed as a regular decomposition),
or it may be governed by the input. The resolution of the decomposition (i.e., the
number of times that the decomposition process is applied) may be fixed beforehand,

or it may be governed by properties of the input data[15].

(a) (b)
Figure 3.1 (a) Triangle Decomposition

(b) Square Decomposition

Our algorithm for quadtree encoding is first to surround the object of interest by
a rectangular domain. The rectangle is then subdivided into four cells. Each cell is
tested to see if it is inside the object (I cell), outside the object (O cell) or on the boun-
dary of the object (B cell). The I and O cells are marked as whether they are inside or
outside. Any B cells are subdivided further into sub-cells. These sub-cells are then
repeatedly tested in the manner above. This process is continued until a representa-

tion of the desired resolution is obtained, or until the minimum cell size is reached.

LEVEL
0

0O 0o 2

0o 3

Figure 3.2 Quadtree

When dealing with this tree data structure (Figure 3.2) there are basically two
types of nodes that will be encountered. The first one is a internal node that will have
branches to nodes at lower levels in the tree. The second type is a terminal node
which ends a particular branch of the tree. For the quadtree encoding scheme, the B
cells are regarded as internal nodes and the I and O cells are as terminal nodes. When
referring to a quadtree there is a terminology problem in dealing with the cell to be
subdivided and the cells obtained from this subdivision. For this reason the cell being
subdivided will be referred to as the parent cell and the sub-cells will be referred to as

the son cells[16].

There are several reasons why the quadtree modeling techniques are so attractive
for computer implementation. The first one is that the storage requirements are rea-
sonable even for the most complex objects. Secondly, boolean operations and transla-
tions or rotations can be handled with the simple operations of addition and multipli-
cation. Furthermore, the tree structures are similar enough for all objects to allow
hardware manipulation and display routine to speed up the modeling process consider-
ably[16].

Since the quadtree encoding method does represent the discretization of a
domain into a set of cells, these cells could be used directly as elements in a finite ele-
ment analysis. Whereas, in view of the requirements for a finite element mesh that are
stated in previous chapter, it can be seen that the direct use of the quadtree for a finite

element mesh is inappropriate. The drawbacks of its direct application include:

1) The interior of object may be represented by a small number of very large ele-
ments.

2) Neighboring cells may be subdivided to a different level. Thus, special care
must be taken to insure continuity of the elements.

3) When the edges of an object are not parallel to the boundaries of the enclosing
rectangle, they need a large number of cells for a satisfactory geometric
representation{Jj.

Nevertheless, the first two problems could be solved by the quadtree algorithm itself.
But the last one does need some modification to the encoding procedure in order to

serve as a basis for finite element mesh generator.

3.2 Modified Quadtree

In order to represent the object geometry in a satisfactory tolerance, quadtree
encoding has been modified in such a way that when a B cell has arrived to a
predefined level this B cell stops dividing and becomes a terminal node in data tree.
The boundary information of the object within this cell is stored in arrays associate
with this B cell. Under this criteria quadtree encoding skills can represent a object
precisely in any user defined level.

In order to reduce the complexity of boundary information, our algorithm has

limited itself to polygon geometry only. The curved edge can be approximated by

several line segments within some tolerance. The algorithm used in [6] has approxi-

10

mated the object’s boundary intersection to the nearest quarter point on a cut cell (ter-
minal B cell) edge and this intersection information is then stored as a pair of the 16
positions. These positions will be moved back to the real boundary of the object in
the mesh stage. In some other algorithms, terminal B cells are divided into two types,
edge cells and vertex cells. The edge equation and coordinates of vertex were stored
as the boundary information. In our algorithm, only the actual intersection point(s) of
B cell and object boundary are stored. Then the vertex coordinates interior to the cell
can be recovered from the stored geometry information. This technique will be dis-

cussed in detail in next chapter.

The modified quadtree encoding method will have some of the same advantages
for computer implementation that the quadtree encoding scheme has. There are cer-
tain tasks that would require special algorithms for the manipulations of the modified
quadtree. The tasks are Boolean operations and rotations. These operations are going
to be more difficult on the modified quadtree than those on the quadtree, but it is pos-
sible that the total time for the operation on a real object could be less. This would be

due to the better representation for the modified quadtree.

The modified quadtree in this form can be used as the basis for a finite element
mesh generation technique. But before a finite element mesh can be obtained by
using the modified quadtree, the first two problems mentioned above must be
addressed. By allowing the selection of the highest level in the tree for internal cells,
the first problem can be solved. This can be incorporated into the process of generat-
ing the modified quadtree simply by requiring that all complete cells (I cells) of a

higher level be flagged as incomplete (B cells). The specification of this highest level

11

will also reduce that severity of the second problem. In order to eliminate the need for

the continuity requirement, transition meshes will be introduced.

12

CHAPTER 4
The Algorithm of Automatic Mesh Generation

4.1 Introduction

In order to demonstrate the capability of the modified quadtree scheme in mesh
generation, a program written in FORTRAN was created. This program is a self-
contained one which is different from the program in [6] which used a different
software for boundary and attribute definitions. In the program used in [5], the
automatic mesh generation was only a part of the whole package of an adaptive FEA
program. For the purpose of input geometry checking anc_l output mesh confirming,
our program uses the graph command supported by the UNIX system to generate a
graphic output. In order to reduce the complexity of the source code of the program,
two recursive subroutines, QCODE and REQCODE, were created. This was done
because most UNIX supporting FORTRAN compliers allow recursive procedures
which are not a standard in FORTRAN yet. Hence, the basic required environment of

this program is a UNIX system which is quite popular nowadays.

In this program there are four major modules:
1) Geometry data
2) Quadtree encoding
3) Inside cell continuity
4) Mesh generation
A graphic output could be produced by inquiry after each module. In following sec-

tions, each module will be discussed respectively.

13

4.2 Geometry Data

There are two types of object edges allowed by the program, line edge and arc
edge. But in the program an arc edge will be approximated by several cords of this
arc [Appendix A]. It means that the program is still dealing with a polygon. All the
vertices of the object are required to be input in a counter-clockwise (CCW) direction
in order to distinguish the inside or outside of the object. If there is any hole within

the object, the program has to be told in advance.

/A\

(a) (b)

Figure 4.1 (a) meshed in a suitable orientation
(b) meshed in an unsuitable orientation

14

4.3 Quadtree Encoding

The main limitation of spatial decomposition methods is that they produce
meshes that are dependent on orientation and aspect ratio of the enclosing rectangle.
In the orientation problem, it is most easily seen in simple objects that have a single,
natural orientation. If such objects are rotated then the induced mesh changes are
often dramatically large. Figure 4.1 is an example with a simple object meshed in a
nonsuitable orientation. Skilled analysts call such meshes "unnatural” and note that
they usually contain more elements than "hand-made" meshes[5].

In order to find a better orientation for mesh generation, the program supports an
optional function to deal with such requirements. The algorithm here is to find a
minimum area enclosing rectangle of the object to represent the orientation. It is
obviously that such a rectangle must include at least one vertex of the object in each
of its edges (note that the object has been replaced by a polygon in the program). If it
is not the case it sure can further reduce the area of the rectangle by pushing forward

one edge of it toward the object. Hence this requirement could be satisfied in the fol-
lowing steps:
1) Find thé maximum X and Y coordinates and minimum X and Y coordinates of
the object vertices.
2) Construct a rectangle by these coordinates and compute its area.
3) Rotate object about X-axis in a certain degree (named Rotating Degree) and

repeat step 1) and 2).

4)

5)

6)

7

8)

15

Repeat step 3) till the rotation range has covered 0 to 90 degrees.

From the shaped rectangles, find the one with minimum area. The rotation
angle of the object which constructs minimum rectangle will be the Checking
Angle in next step.

Compute angle between X-axis and each edge of the object. If the difference
between this angle and Checking Angle is less than Rotating Degree, then this
edge will be a candidate to represent the object’s orientation. It is noted that in

this step the two end points instead of the cord approximation will be used to
represent an arc edge.

Among the candidates, find the longest edge. Rotate object in such a way that
this edge parallel to Y-axis.

Repeat step 1) and 2) to construct the enclosing rectangle for quadtree enceding

use.

There is an alternative method to accomplish this requirement, that is to construct a

convex hull for the object then the required rectangle will have at least one edge

which coincides with one of this convex hull’s edges.

In aspect ratio problems, the program also offers an optional function. It can be

done in a very simple way. Compute the aspect ratio of the rectangle; if it is greater

than

a predefined value, the program will lengthen both the short edges of the rectan-

gle an integral number of times so that the aspect ratio will be satisfied.

In the quadtree encoding module, the user must input two numbers to define the

lowest level (Bottom Level) to which quadtree can go and the highest level (Top

16

Level) that quadtree may need to go to. That is, the first number defines the maximum
size of the smallest elements, the second one guarantees 2 minimum size of the largest
elements. In [5], all element sizes are determined by the smallest cell during quadtree
encoding. This minimum cell is determined by subdividing cells until no cell contains

more than one connected boundary segment of the object.

In our algorithm, all cells are divided into four types: inside cells (IC), outside
cells (OC), boundary cells which need to be subdivided (BC), and boundary cells
which have arrived the Bottom Level (BBC) -i.e. they are terminal B cells and do not
need to be subdivided. The cell code is numbered 0 for OC, 1 for IC, 2 for BBC and 3
for BC. Because there are only four types of cell, program will form a quadtree code
by transforming each cell code to be a two-bit binary representation so that the
memory storage can be efficiently used. Hence the quadtree encoding FORTRAN

statement would be like:

QuadtreeCode = QuadtreeCode * 4 + CellCode

The following algorithm is used to classify the cell:
Find the intersection points of all cell’s edges and the object’s boundary.
Case 1: No intersection point exists
The central position of this cell will be checked to see whether it is inside or
outside of the object [Appendix B]. Then this cell will be marked as same
status as this central position (i.e. a IC or OC).
Case 2: An intersection point exists
Coordinates of the intersection points will be stored and cell will be marked

as a BC. But if the cell has reached Bottom Level this cell will be marked

17

as BBC. In order to prevent the repetitively storing the intersection points,
the foilowing technique is used: When a BC has divided into four cells, each
cell will be numbered from 1 to 4 and four edges of each cell are also num-
bered from 1 to 4 (Figure 4.2). For each cell, the intersection points lying
on the same numbered edge as cell’s are going to be stored. It is apparently
shown that the coordinates need to be stored as long as they are on the
crossed lines within parent cell. Associated with stored coordinates, the
object’s edge on which intersection points are lying is also recorded. This
information will be used as logical connection data in Procedure 1) and 2) of

mesh generation (refer section 4.5).

4
2 1
1 3
3 4
2
(a) (b)

Figure 4.2 (a) Cell Number (b) Edge Number

18

It is noted that in [6] cell classification procedure is based on in/out tests of cell
vertices, with some special operations performed on vertices of cells having uniform
vertex classifications. Infout tests on vertices are insufficient because cells containing

holes or thin sections might be misclassified.

AS

For quadtree encoding a recursive method, similar to depth first method, is applied as
following:
1) Divide the enclosing rectangle into four cells.

2) Number each cell from 1 to 4 in a CCW sense as same as above (Figure 4.2)

and specially name cell 4 as a "Sentinel" then start from cell 1.

3) Decide the cell code according to the algorithm mentioned above and add this

cell code to the quadtree code.

4) If the cell is a BC then it should subdivide itself (as a parent’s cell) to four son’s
cells; that is to go one level down of the tree. Then go to step 2).
If the cell is a BBC or IC or OC and isn’t the "Sentinel" then choose the sibling
cell numbered after this and go to step 3); otherwise, if this cell is the "Sentinel”
then return one level up back to its parent in the tree; If the parent is the "Sen-
tinel" then pop one level up again; otherwise, the retrievement should continue
choosing the cell numbered afterward and go to step 3). If the root has been

reached, the encoding has done.

19

4.4 Inside Cell Continuity

To use the generated quadtree code, when a cell is decoded from the quadtree its
boundary coordinates should be found at the same time. In our algorithm, the cell is
addressed in a relative local method; that is, all cells are numbered between 1 and 4.
This is quite different with [5], which has a global address for each cell (Figure 4.3).
Hence, in [5] to find the four boundaries of each cell, it needs back tracing to the tree
structure of the quadtree codes. However, in our program a dynamic tracing tech-

nique is effectively induced.

84 |85
82 |8
o Lez s

~

(<

Figure 4.3 Gloabie Cell Number

20

First, reserve two arrays, POINTER and BOUNDARY, and an index variable,
LEVEL,; the index range from 1 to the value of Bottom Level, defined by user. Pro-
gram starts with initial value 1 to LEVEL and POINTER(1). Boundary information
of cell 1 which comes from the subdivided of the enclosing rectangle was initially
stored at BOUNDARY(1). Each time a cell code is decided, procedure 1) or 2) will
be called. When the cell is a BBC or IC or OC, procedure 1) is invoked; otherwise,
procedure 2) is invoked.

PROCEDURE 1)

POINTER(LEVEL) = POINTER(LEVEL) + 1;
if POINTER(LLEVEL) .eq. 5 then
{

LEVEL =LEVEL - 1;

go to procedure 1.

}

. else

update BOUNDARY(LEVEL) information

PROCEDURE 2)
LEVEL =LEVEL + I;
POINTER(LEVEL) = 1;
create BOUNDARY(LEVEL) via BOUNDARY(LEVEL-1) i.e. its parent’s

boundary coordinates.

21

Under the above procedures, POINTER and BOUNDARY will always have the cell

number and boundary information of the current working cell in corresponding level.

Before the quadtree code can be applied to the mesh generation, there are two
problems mentioned in Chapter 3 that need to be solved first:
1) The size of interior cells.

2) Level difference between adjacent cells.

The purpose of problem 2) is to reduce the number of possible transition elements
needed and will be handled first. This purpose can be attained by constraining at most
one level difference between a inside cell and its neighbors. However, there are two
separate tasks involved in this requirement. The first task is to identify the cells that
have to be subdivided. This is followed by the second task of inserting the subdivided
cells’ information into the quadtree code. These two tasks have to be repeated
because there is a possibility that further subdivisions may be required. This process

is continued until there is no longer the need to subdivide any cell.

In the first task, there is a considerable amount of searching requirement for all
neighbors of a inside cell. In order to reduce this searching requirement, a level
oriented method will be used. Define a target level first, if there exists any inside cell
in this level, then, by using the dynamic tracing technique explained in previous sec-
tion, the program will record the boundary information of all BC cells at one level
lower than the target level. Thus, all the ICs in target level will be checked to see if
the recorded boundary information is adjacent to them. If such a IC is detected, the

program will immediately invoke the second task, which will be explained later. If

22

the quadtree code has been changed at a target level, the target level should pop one
level up. If the quadtree code kas not been changed, the target level should go one
level down. All procedures process until the target level reaches one level above the
Bottom Level.

As to the second task, the program uses a temporary array to recreate a new
quadtree code. If the cell, decoded from the old quadtree code, need not be subdi-
vided, it will be directly attached to the temporary array in its original code; other-
wise, the cell code numbered 1 of the IC will be substituted by the string of five cell
codes in 31111 sequent order and inserted to the temporary array. After the process is

finished at each target level, the quadtree code is replaced by the temporary array.

About the problem 1) the size of interior cell can be controlled as following: To
detect IC at a level higher than the Top Level; if such IC is found, then new cell code

will be inserted in the quadtree code by a recursive method similar to the second task.

4.5 Mesh Generation

After processing the three modules described in the above sections, the generated
quadtree code can now be converted into a finite element mesh. For a inside cell, if its
adjacent cells are in the same level or one level above this cell, it is directly converted
into a quadrilateral element; otherwise, this IC will be converted into several transi-
tion elements according to how many of the adjacent cells are at the lower level. In
Figure 4.4 to 4.8, all of the transition meshes generated by this program are shown. In

some FEA program, the five-node piecewise linear element is allowed. Hence, there

23

is an optional function in our program to generate a five-node transition element to

" replace the three triangle elements in each of Figure 4.4 and 4.7.

Figure 4.4 Figure 4.5

Figure 4.6 Figure 4.7

Figure 4.8

24

For BBC, the program uses the following three procedures to create elements:

Procedure 1) Detect the effective nodes
1. For any BBC, all the stored boundary intersection points and vertices of the
object are tested to see whether they are on or inside the cell.
2. Collect all the points which have a true result in the above test (i.¢. either inside
or on the edge).
3. Add the BBC's vertices which are on or inside the object domain to the above
collected points.

4. All these collected points (intersection object vertices and cell vertices) will be
accepted as nodes for creating elements except in some special case similar to

Figure 4.9. These uneffective nodes will be deleted by either of following

processes:
Object Object
Side Side
A A
(a) (b)

Figure 4.9 Both points "A" are uneffective nodes

25

A. The object’s vertex nodes accepted due to their positions on the cell (Figure
4.9a) will be processed in steps given below;

a) Search for two logical connection nodes with this vertex node. If these
two nodes exist, the vertex node will be accepted as a effective node; oth-
erwise, continue step b).

b) Search for the consecutive nodes for this vertex node along the same cell
edge of this veriex node in both direction. If both nodes exist, then apply
in/out test to the middle positions of the vertex node and the found nodes;
otherwise, delete this vertex node from the list of collected points. In the
in/out test, both of the middle positions must be inside the object domain
so that the vertex node will be an effective node.

B. For the cell’s vertex node accepted due to the position on the object (Figure
4.9b), only the above step b) is applied to assure that this cell’s vertex node is

an effective node.

Procedure 2) Construct a polygon

In this procedure the program will create a polygon in CCW sense by using the

nodes collected in procedure 1.

1. Start from a node at the cell vertex; if no such a node exists, then choose one on

the cell boundary to be the first vertex of the polygon.

2. Tofind the second vertex, the following two steps are applied sequentially :

26

a) Find the consecutive node along the same cell edge of the first vertex in a
CCW direction as the second vertex. If no such a node exists, continue step
b).

b) Find the logical connection node with the first vertex as the second one. If
there is more than one node, choose the one with a maximum angle, meas-

ured in CW sense, with the cell edge.

3. For following vertices, apply the above two steps similarly but step b) will be
executed before step a) and the maximum angle will be replaced by minimum
angle in step b).

4. After every node has become a vertex of a polygon, it will be eliminated from
the list of collected nodes. In consecutive vertex searching, if none of the
remaining nodes could satisfy step b) and a) then a polygon is created. Thus,

transfer this polygon to procedure 3).

It is noted that in most cases one BBC constructs only one polygon but, as Figure
4.10 shows, sometime there will have more than one polygon. In this case, the ver-
tex with two logical connection nodes (Figure 4.10a) will be flagged; or the whole
cell will be flagged to indicate there are remaining nodes left (Figure 4.10b). After
procedure 3) is executed, the program will revert back to procedure 2) and begin

executing from the flagged vertex or one of the remaining nodes.

27

Object /I git;j: ! J

(a) (b)

Figure 4.10 Two polygons in one cell

Procedure 3) Element creating
If the input polygon is a quadrilateral or triangle, it will be used directly to create
an element; otherwise, apply following steps:

1. Find the maximum vertex angle, divide the polygon into several triangles by

connecting this vertex with all other vertices of this polygon.

2. Find the triangle with minimum area, merge it with one of its adjacent triangles
whose area is smaller. Create a quadrilateral element from these two merged
triangles, then eliminate those two triangles. If there is no triangle adjacent to
the minimum area triangle, then create a triangle element from this triangle and

eliminate it.
3. Repeat step 2. till all triangles are climinated.
In a concave object or object with holes, occasionally a IC will have object’s ver-

tices on its boundary. If this case is detected, instead of creating the standard transi-

tion meshes shown in Figure 4.4 to 4.8, this IC with those vertices will be viewed as

a polygon and transferred into Procedure 3).

28

Before these meshes are used in FEA, a final problem has to be solved that is to
eliminate the ill-formed elements. Most ill-formed elements are defined by a large or
small vertex angle or poor aspect ratio, but in the quadtree based mesh generation
technique there is another type of ill-formed elements due to their very small area. All
these elements can be detected and should be processed in one of the following steps
(test sequentially):

1) Element with a poor aspect ratio or critical angle:
The closest two nodes are merged into a single node, thus a triangle element
will become a line and a quadrilateral element will become a triangle or line.
But for a quadrilateral element with a large vertex angle, the program will try to

divide the element into two triangles first.

2) Element with very small area:
The whole element will condense into a single node and the position of this
node is either at an average boundary position of the object or at an object’s

vertex.

Of course, after each of the above steps other affected elements will need to be

adjusted, too.

The above procedure can be put in two places, right after the whole mesh is gen-
erated or when an element was created. If it is put in the first place, the procedure can
be executed repeatly to assure all elements are well formed. But in the second place
procedure will require less computation time because of the adjustment of other

affected elements. In this program the second option was chosen.

29

CHAPTER 5

Examples and Conclusions

5.1 Examples

In this section, we will illustrate two examples to demonstrate the capability of
our algorithm in mesh generation. The first example is a simplified gear shaped object
and the second one is a wrench-like object. Furthermore two different mesh density
outputs will be compared with example 1.

Figure 5.1 is the geometric shape of example 1. Figure 5.2 is the modified quad-
tree code with the object boundary of example 1. It is noted that the level difference
between the adjacent cells has not been adjusted. Figure 5.3 is the modified quadtree
code adjusted after the inside cell continuity checking. Figure 5.4 is the output mesh
of example 1. Figure 5.5 is the same output mesh of example 1 except that the five-
node element was chosen to use in transition mesh and this figure is plotted in a shrink
mode, an optional request of this program, to make sure there is no hole between the
elements. Figure 5.6 is another mesh output of example 1 except that the quadtree is
terminated at level 4 instead of level 5 in the example 1 i.e., Bottom Level has been
assigned at level 4. Figure 5.7 is also an mesh output of example 1 except that the
quadtree is terminated at level 6. Figure 5.8 is the same as Figure 5.7 except that the
Top Level has been assigned at level 5 instead of level 1 (the default level). Figure

5.9 is the geometric shape of example 2. Figure 5.10 is the output mesh of example 2.

Figure 5.1
/ \
/ \
s /r I~ ~J
i SN
- <
7 N
7] —+ N
7 PEan=v, \
/
) P a
ot]
i }
Py vA bt
% \\\ 1/} 7‘
aanat ,
N v
3y 4
N pd
AN A
N\ <
it
\ /
\ /

Figure 5.2

30

L
it
|
] !
i I
I
Figure 5.3
[\
/[\

]]]
]

NERE

——
1‘ /..
l\ y.
i1l
y/
y
I v

N l |

—T1]
—]

Figure 5.4

31

Ry
ot =

Figure 5.5

[~

Figure 5.6

32

H) 111 1
p a3
Poan au
A &
: =
H i M
‘ 1y ,
. H y.om
-~ -'@\ £
5
d..
S 5
f
Figure 5.7
i
4
&£
G- 1
. =
' i
, i i
: . .
A %
K2
:b T 1L 11
f

Figure 5.8

¢

Figure 5.9

L
- .
ftp fot et
LD

Figure 5.10

34

