A novel nonlinear impulse sampler is presented that provides a clock sharpening circuit, sampling stage, and post-sampling block. The clock sharpening circuit sharpens the incoming clock while acting as a buffer, and the sharpened clock is fed to the input of the sampling stage. The impulse sampling stage has two main transistors, where one transistor generates the impulse and the other transistor samples the input signal. Post-sampling block processes the sampled signal and acts as a sample and hold circuit. The architecture uses an ultrafast transmission-line based inductive peaking technique to turn on a high-speed sampling bipolar transistor for a few picoseconds. It is shown that the sampler can detect impulses as short as 100 psec or less.
References Cited

U.S. PATENT DOCUMENTS

9,246,505 B2 1/2016 Aggrawal et al. 8,099 327/108
2017/0230054 A1* 8/2017 Francis H03M 1/001

OTHER PUBLICATIONS

* cited by examiner
FIG. 2

From a broadband on-chip antenna

Implemented with a T-Line

T1

Node 1

Chold

Vout

Vreset

M1

Vbias

Vinput

To a lower-speed sampler

T2

Vtrigger
FIG. 6

Sampler Output (V)

Sampler Input (V)

FIG. 7

SFDR2

SFDR3

SFDR4

SFDR5

Input Frequency (GHz)

0.2 5 10 15 20 25 30
FIG. 8

Normalized Amplitude

Time (ps)

Input Pulse
Recovered Pulse

FIG. 9

Amplitude (V)

Time (ps)

Input Signal
Sampled Signal
IMPULSE SAMPLER ARCHITECTURE AND ACTIVE CLOCK CANCELLATION ARCHITECTURE

RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Patent Application No. 62/299,675 filed on Feb. 25, 2016, which is incorporated herein by reference.

FIELD OF THE INVENTION

This invention relates to impulse sampler and active clock cancellation architectures.

BACKGROUND OF INVENTION

In the last few years, there has seen a shift from continuous-wave systems to pulse-based systems for high-resolution 3D imaging, high-speed wireless communication, and broadband spectroscopy. Designing a receiver to detect sub-100 psec pulses without causing distortion is extremely challenging. This requires a high-performance analog to digital converter (ADC) with an extremely short sampling window. Such samplers primarily exist in expensive III-V materials. Moreover, the ADC architectures have not changed in decades. Every year, the performance of ADCs has been improved by either moving to a newer technology node or by adding circuitry, such as bootstrapping or active cancellation. Such addition comes at a cost of increased area, power, or both. A novel Nonlinear Impulse Sampler architecture is introduced that aims to reduce the sampling window and increase the bandwidth of the system.

Conventional ADCs use Sample and Hold (S/H) or Track and Hold (T/H) architecture to sample the input signal. For example, a series CMOS switches sample the input signal and stores it on a holding capacitor. In these samplers, the series resistance of the CMOS switch (R-switch) and the size of the holding cap (Chold) determine the time constant of the circuit (t=RswitchxChold) and its effective analog bandwidth. The analog bandwidth of these samplers is limited to 70 GHz. Such architectures are very useful in implementing an ADC with high linearity and resolution. However, these samplers operate at few gigahertz and thus have a relatively large sampling window compared to the proposed architecture. Moreover, to further reduce the sampling window, a high-speed clock with very sharp edges is required. The generation of such a clock with stringent requirement is extremely difficult and consumes large amount of power.

The proposed impulse sampler architecture uses ultra-short impulses to sample the signal. These short pulses activate a nonlinear sampling circuit for only a few picoseconds. One point of novelty of this architecture lies in the on-chip generation of the ultra-short impulse samplers, thus relinquishing the stringent external clock requirements. These improved samplers may significantly reduce the sampling window and increase bandwidth of a system.

SUMMARY OF INVENTION

In one embodiment, an impulse sampler comprises three main blocks: clock sharpening circuit, sampling stage, and post-sampling block. The clock sharpening circuit provides a clock signal and may include a differential amplifier followed by a voltage follower, which also acts as a voltage shifter. This block sharpens the incoming clock while acting as a buffer. The sharpened clock is fed to the input of the impulse sampling block. The impulse sampling block has two main transistors: impulse transistor M1 to generate the impulse, and sampling transistor M2 to sample the input signal. The collector of transistor M1 is connected to a voltage and its emitter connected to ground via a transmission line (T1), which acts as an inductor. Sampling transistor (M2) is used to sample the input signal. The emitter of this transistor is connected to the emitter of M1. Post-sampling block processes the sampled signal and acts as a sample and hold circuit. The first stage of the post-sampling block is a buffer that acts a voltage shifter. Following this stage is a class-A amplifier that inverts the signal.

The foregoing has outlined rather broadly various features of the present disclosure in order that the detailed description that follows may be better understood. Additional features and advantages of the disclosure will be described hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present disclosure, and the advantages thereof, reference is now made to the following drawings to be taken in conjunction with the accompanying drawings and the detailed descriptive matter describing specific embodiments of the disclosure, wherein:

FIGS. 1A-1C respectively shows architecture and schematics for core blocks of an impulse sampler, including (1A) block diagram, (1B) impulse sampler, and (1C) post sampling;

FIG. 2 shows an illustrative embodiment of an impulse sampler;

FIG. 3 shows an illustrative architecture of an impulse sampler;

FIG. 4 shows an experimental setup;

FIG. 5 shows a 20 MHz input signal sampled at 200 MHz;

FIG. 6 shows sampled output voltage versus input DC voltage;

FIG. 7 shows SFDR of recovered signal from impulse sampler;

FIG. 8 shows pulse recovered from impulse sampler;

FIG. 9 shows amplitude (V) versus time (ps) for an input signal and sampled signal;

FIGS. 10A-10B respectively show normalized amplitude versus time (ps) for input and output before/after shifting; and

FIG. 11 shows a chip micrograph of impulse sampler fabricated in IBM9HP BiCMOS process and measures 1.7 mmx0.6 mm including bondpads.

DETAILED DESCRIPTION

Refer now to the drawings wherein depicted elements are not necessarily shown to scale and wherein like or similar elements are designated by the same reference numeral through the several views.

Referring to the drawings in general, it will be understood that the illustrations are for the purpose of describing particular implementations of the disclosure and are not intended to be limiting thereto. While most of the terms used herein will be recognizable to those of ordinary skill in the art, it should be understood that when not explicitly defined, terms should be interpreted as adopting a meaning presently accepted by those of ordinary skill in the art.

It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only, and are not restrictive of the invention, as claimed. In this application, the use of the
sional includes the plural, the word "a" or "an" means "at least one", and the use of "or" means "and/or", unless specifically stated otherwise. Furthermore, the use of the term "including", as well as other forms, such as "includes" and "included", is not limiting. Also, terms such as "element" or "component" encompass both elements or components comprising one unit and elements or components that comprise more than one unit unless specifically stated otherwise.

There has been growing interest in pulse-based system for imaging, high-speed wireless communication, or spectroscopy. Conventional samplers have a relatively large sampling window, which may be determined by the series resistance and size of the holding capacitor. Further, providing a high speed clock with sharp edges is difficult and consumes a large amount of power.

Improved impulse sampler systems and methods are discussed herein. In some embodiments, the impulse sampler systems and methods may be utilized in a wireless receiver receiving pulse signals. In some embodiments, the impulse sampler systems and methods may be utilized in an analog-to-digital converter (ADC) of the wireless receiver. The schematic of an improved sampler is explained herein.

The nonlinear impulse sampling block comprises three main blocks, clock sharpening circuit 110, sampling stage 120, and post-sampling block 130, as shown in FIG. 1a. The clock sharpening circuit provides a very high gain differential amplifier followed by a voltage follower, which also acts as a voltage buffer. This block sharpens the incoming clock while acting as a buffer. The sharpened clock is fed to the input of the nonlinear impulse sampling block. The impulse sampler may also include a power management block 140, which may include any power management components desired, such as, but not limited to, rail-rail capacitors, decoupling capacitors, ESD protection, or combinations thereof.

The nonlinear impulse sampling block has two main transistors, as shown in FIG. 1b. Impulse transistor M1 generates the impulse, and sampling transistor M2 samples the input signal. While various values are shown for the components in FIG. 1b, it shall be understood that the figure is a nonlimiting embodiment and such values are merely nonlimiting examples. As shown in FIG. 1b, the collector of transistor M1 is connected to Vdd and its emitter is connected to ground via a transmission line (T1). A clock signal is provided to the impulse sampling block, which may be provided to the impulse sampling block by the clock sharpening circuit. It is well understood in the art that a clock signal provides a signal that oscillates between low and high states. The impulse sampling block may provide a sampling circuit and coupling circuit. Regarding the coupling circuit, when the clock signal is high (e.g., IV), transistor M1 is on and conducts current through transmission line T1. This transmission line T1 acts as an inductor. Soon after the clock becomes high, a steady state is reached and the voltage at the emitter of M1 becomes close to ground (0V). At t=0, the clock starts to fall and reduces the first emitter voltage VEm of M1, which in turn reduces the current through M1. The transmission line inductance opposes this change by lowering the emitter voltage of M1 below 0V in a very short time. For a short clock fall time, the current though M1 decreases quickly. This sharp drop in current generates a negative spike for few a picoseconds. In some embodiments, the impulse sampling block is suitable for impulse of 100 ps or shorter. In some embodiments, the impulse sampling block is suitable for impulse of 50 ps or shorter. In some embodiments, the impulse sampling block is suitable for impulse of 10 ps or shorter. This drop is proportional to the inductance of the transmission line and the rate of change in the current. The negative impulse voltage can be calculated by:

\[V_{\text{impulse}} = -L \frac{dI}{dt} \]

A de-Qing resistor R1 is added to damp out the ringing in the impulse generated.

The sampling circuit provides a sampling transistor (M2) is used to sample the input signal. The emitter of this transistor M2 is connected to the emitter of M1. The input signal is biased such that M2 is off when its emitter is at 0V; hence no current flows through M2. When the impulse transistor M1 creates a negative impulse at the emitter node as discussed above, second emitter voltage VEm of M2 increases and turns on M2 (VEm = VInputSignal - VEmitter). During this period, the current through M2 is exponentially proportional to the input signal. The output of the sampler is an impulse whose amplitude increases by the voltage of the input signal at the time of sampling. It shall be recognized by one of ordinary skill in the art that the sample signal outputted by M2 also has a short duration corresponding to the duration of the negative impulse. A voltage follower or buffer may be added as a buffer stage to decouple the sampler from the following stage. Transistor M3 is used as a cascode transistor of a M2-M3 cascode configuration to isolate resistor R2 and transistor M4 from M2 and eliminate the Miller effect.

In this architecture the sampling window is defined as the time during which the sampling transistor M2 turns on. In some embodiments, the sampling is suitable for impulse of 100 ps or shorter. In some embodiments, the impulse sampling block is suitable for impulse of 50 ps or shorter. In some embodiments, the impulse sampling block is suitable for impulse of 10 ps or shorter. This time is determined by the pulse width of the negative impulse and bias of the input signal. The sampling window of the sampler can be reduced by decreasing the bias voltage at the base of M2. The bias voltage can be chosen such that transistor M2 turns on for a few picoseconds. As shown nonlimiting example in FIG. 1b, the negative impulse generated by M1 has an amplitude of 300 mV. If we assume M2 turns on at a second emitter voltage of VEm of 700 mV and input bias of 500 mV, the impulse sampler only turns on for a short period of time when the amplitude of the impulse is higher than 200 mV.

Post-sampling block processes the sampled signal and acts as a sample and hold circuit. The first stage of the post-sampling block is a buffer that acts a voltage shifter. Transistor N1 is used as a buffer to couple the sampled signal to transistor N3. Transistors N1 and N2 form an emitter follower circuit with emitter degeneration, where emitter load is transistor N2. Transistor N3 is an emitter amplifier with emitter degeneration to improve linearity. Following this stage is a class-A amplifier that inverts the signal, as shown by the input to transistor N4. The inverted signal is still an impulse, and its amplitude depends on the input signal. The following stage is a modified voltage follower stage, where instead of drain resistance, a holding capacitor C1 is added as shown in FIG. 1c. During the rising edge of the inverted signal impulse at the base of transistor N4, the voltage across the holding capacitor C1 follows the rising edge. However, during the falling edge of the inverted signal impulse, transistor N4 turns off and the holding capacitor C1 holds its voltage. This design enables the holding capacitor to retain the peak value of the impulse as shown by the
output signal of transistor N4. This holding architecture gives enough settling time for the digitizer to digitize the held voltage. A reset transistor N5 is added across the holding capacitor C1 to reset its value before the next sample is acquired. Finally, an output buffer is added to read the voltage of the holding or sampling capacitor and drive a 50Ω load.

The novel technique used to sample the input signal is described in further detail herein (FIG. 2 providing a simplified illustration of an impulse sampler). In this technique, the input signal (Vin), such as from a broadband on-chip antenna, is applied to the base node of a bipolar transistor T1 (e.g. high-speed bipolar transistor), as shown in FIG. 2. Initially, the Vch of transistor T1 will remain slightly smaller than its threshold voltage, Vth. During this time, transistor T2 will be on, and its emitter current will flow through a small inductor L1. In some embodiments, L1 may be implemented with a short transmission line.

During the sampling phase, a fast trigger or clock signal (Vtrigge), with a fall time of 8 psec or shorter, will turn off T2 and force its current, I0, to become zero. This event will cause a sharp change in the current of L1, which will generate an ultra-short negative impulse at Node_1. The impulse will appear because inductor L1 will react to the change in its current by producing a sharp negative voltage at Node_1. On the basis of simulation results, it is expected that the short negative impulse will turn on transistor T1 for a short time, e.g. ~2 psec. During this period, transistor T1 will generate a short impulse current, e.g. with FWHM of 1 psec. The amplitude of this current will depend on the input voltage applied to base node of transistor T1. This current will flow through a cascade transistor T3 and generate a voltage on the holding capacitor Chold. After this step, the voltage of the capacitor Chold will be captured and digitized. The cascade transistor T3 will eliminate the Miller effect at the input node. A reset transistor M1 may be provided across the holding capacitor Chold to reset its value before the next sample is acquired. The relationship between the input voltage and the sampled output will be nonlinear, but it can be calibrated because it's systematic.

A comprehensive simulation incorporating the effect of parasitic RLC suggests that this method can sample pulses as short as 1 psec with four-bit accuracy, which suggests the sampler can reliably detect pulses of 100 psec or less. In other embodiments, the system may be capable of detecting pulses of 50 psec or less. In other embodiments, the system may be capable of detecting pulse of 10 psec or less. Based on the time-domain simulations performed, it's believed that it is possible to capture picosecond pulses with an optimized slot-bowtie antenna.

The new architecture for sampler is discussed (FIG. 3). The architecture uses impulses to sample the input signal. The impulse switches the base of the transistor which samples the signal. A fast clock (e.g. 10 GHz or faster) is provided which goes through a clock sharpening circuit, which can be a digital buffer. This circuit sharpens the incoming clock by decreasing the rise/fall time of the clock transitions. The clock is the then fed to the sampling block.

In the sampling block, the clock switches the base of an impulse transistor whose emitter is connected to an inductor, when the clock switches the impulse transistor on, a large amount of current flows through the impulse transistor to the inductor. The inductor stores this energy until the clock switches off the impulse transistor. This sudden transition causes the inductor to release the stored energy in a form of impulse. A matching network along with filters can be used to make the impulse sharp and ringing free. This impulse drives the emitter of the sampling transistor.

The sampling transistor's base is fed with the signal to be sampled. The input signal is biased in such a way that the sampling transistor is in off state until the impulse generated by the inductor arrives and turns into a high gain amplifier. Cascade structure is used to increase the instantaneous gain of the sampler. The voltage in the sampler is proportional to the input signal and the duration of the impulse. Further signal conditioning is done to convert the impulse to an amplitude modulated step response.

Clock Leakage Mitigation Architecture for Sampling Transmission-Gate:

In addition to mitigating the source-drain leakage in a sampling transmission-gate using active cancellation, it is very important to mitigate the sampling clock leakage in high-speed sampling circuits. To mitigate clock leakage, extra transistors are added to the existing transmission-gate with active cancellation architecture. These extra transistors are added in such a way that when fed with the sampling clock and its complementary signal, the gate-source and gate-drain leakages are mitigated. The added clock leakage mitigation circuit on top of source-drain leakage mitigation circuit makes the complete system behave like an ideal transmission gate, even at very high sampling clock and input frequencies. This close to ideal transmission-gate helps in improving the performance number of the sampler. A nonlimiting example of a suitable clock leakage mitigation architecture is provided in U.S. Pat. No. 9,246,505, which is incorporated by reference herein.

Experimental Example

The following examples are included to demonstrate particular aspects of the present disclosure. It should be appreciated by those of ordinary skill in the art that the methods described in the examples that follow merely represent illustrative embodiments of the disclosure. Those of ordinary skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments described and still obtain a like or similar result without departing from the spirit and scope of the present disclosure.

Measurement Setup:

FIG. 4 shows an experimental setup. The measurement setup includes a two-channel arbitrary waveform generator that generates the clock and the reset signals both at 200 MHz. The reset signal has a one-third duty cycle and is shifted to arrive during the period when a DC current flows through T1 (end of hold phase). Both clock and reset signals are internally locked. An external RF signal generator is used to generate a high-frequency tone as the input signal for the SFDR measurement. The waveform generator and RF generator are locked using a 10 MHz reference clock. In a separate measurement, instead of using an RF generator, a keysight M8195A 65 GS/s arbitrary waveform generator is used to generate an extremely short impulse with a 100 psec pulse width.

A 10 MHz analog phase shifter is added on the reference clock path to shift the relative positioning of the sampling clock and the input signal. The phase shifter linearly shifts the 10 MHz clock up to 360° by adjusting its control voltage. The 10 MHz reference clock is upconverted to 200 MHz (x20) to generate a clock. To emulate a sub-sampling ADC, the voltage across the phase shifter is continuously shifted to change the sampling position. In this setup, the voltage
across the phase-shifter can be varied with an accuracy of 0.2 mV, which corresponds to 1.67 ps in the time domain. The output of the impulse sampler chip is digitized by a Keysight sampling oscilloscope. The entire acquisition process is automated using a Matlab code. A master computer communicates with the instrument using a GPIB-VISA protocol.

Measurement Results:

The performance of the chip is shown with various different experiments. FIG. 5 shows a 20 MHz input signal sampled at 200 MHz. First, to determine the voltage characteristics of the impulse sampler, the DC of the input signal was swept, and the output signal was measured. As expected, the output signal increases exponentially before saturating the sampling transistor, as shown in FIG. 6. This measurement is crucial in determining the input-output transfer function of the sampler chip. The input signal can be recovered by reverse mapping the sampled output with this one-to-one transfer function.

Another experiment performed was to determine the linearity and bandwidth of the impulse sampler. To perform this experiment, the input signal is swept from 200 MHz to 30 GHz while keeping the peak-to-peak voltage constant at 80 mV. The phase shifter voltage is linearly increased after every sampling to achieve 128 samples during one period of the input signal. The output value is averaged 16 times before a 256 point DFT is performed. Even though the sampler is differential, the current measurements are done single ended. Finally, the SFDR values at different input frequencies are reported in FIG. 7. Based on the measurement, the SFDR values of different input frequencies are reported in FIG. 7. Based on the measurement results, SFDR3, SFDR4, and SFDR5 converge after the input frequency reaches 5 GHz. This is because the harmonics fall below the noise floor.

In the second experiment, a pulse with Full-Width-at-Half-Maximum (FWHM) of 35 ps was generated using an arbitrary waveform generator and fed to the input of the sampler chip. The input and sampled output are normalized and then plotted for comparison. As shown in FIG. 8, the pulse recovered from the impulse sampler is very close to the input signal. The recovered pulse has a FWHM of 53 ps. An accurate recovery of the pulse is essential in spectroscopy and medical imaging. The close numbers show that the sampling window of the impulse sampler is very small and the system is extremely broadband. This experiment demonstrates the ability to detect ultrashort pulses.

The third experiment shows the ability to distinguish very short pulses next to each other. This parameter is important in communication & imaging applications and sets the limit for data-rate and spatial resolution. As illustrated in FIG. 9, the chip can easily detect two pulses (FWHM≈93 ps) that are 200 ps apart. Finally, FIGS. 10A-10B show the ability to detect very small shifts in the position of the pulses. In this experiment, the input pulse is shifted by 12.4 ps (measured at 50% amplitude), the sampled pulse shifts by 14.9 ps (also measured at 50% amplitude). This shows that the sampler can detect shifts with an accuracy better than 3 ps, which corresponds to 1 mm in air, a critical parameter for building impulse radar. The performance of this chip is compared with other devices in Table 1.

Table 1

<table>
<thead>
<tr>
<th>Detection</th>
<th>Method</th>
<th>Bandwidth</th>
<th>Sampling Rate</th>
<th>Lowest Power Detected</th>
<th>Signal Type</th>
<th>Technology</th>
<th>Die Area (including pads)</th>
<th>Power (Total)</th>
<th>Consumption (Core only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impulse</td>
<td>Sub-sampling</td>
<td>>10 GHz</td>
<td>>500 MHz</td>
<td>-15 dBm</td>
<td>Gaussian Pulse</td>
<td>90 nm BICMOS</td>
<td>1.02 mm²</td>
<td>105 mW</td>
<td>1.4 mW</td>
</tr>
<tr>
<td>Track/Hold</td>
<td>Sub-sampling</td>
<td>10 GHz</td>
<td>100 MHz</td>
<td>-15 dBm</td>
<td>Gaussian Pulse</td>
<td>40 nm CMOS</td>
<td>0.78 mm²</td>
<td>1.09 mW</td>
<td>1.34 mW</td>
</tr>
<tr>
<td>Pipelined</td>
<td>Flash</td>
<td>2.5 GHz</td>
<td>5 GHz</td>
<td>Not Reported</td>
<td>Continuous Wave</td>
<td>65 nm CMOS</td>
<td>1.1 mm²</td>
<td>1.1 mW</td>
<td>1.3 mW</td>
</tr>
<tr>
<td>Flash</td>
<td>Sub-sampling</td>
<td>4.5 GHz</td>
<td>4.25 GHz</td>
<td>Not Reported</td>
<td>Continuous Wave</td>
<td>130 nm CMOS</td>
<td>1.3 mm²</td>
<td>63 mW</td>
<td>84 mW</td>
</tr>
<tr>
<td>Track/Hold</td>
<td>Sampling</td>
<td>4.3 GHz</td>
<td>1.2 GHz</td>
<td>Not Reported</td>
<td>Continuous Wave</td>
<td>130 nm CMOS</td>
<td>1.13 mm²</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

35, 40, 45, 50, 55.
described and still obtain a like or similar result without departing from the spirit and scope of the present disclosure. From the foregoing description, one of ordinary skill in the art can easily ascertain the essential characteristics of this disclosure, and without departing from the spirit and scope thereof, make various changes and modifications to adapt the disclosure to various usages and conditions. The embodiments described hereinafter are meant to be illustrative only and should not be taken as limiting of the scope of the disclosure.

What is claimed is:
1. A method for sampling an input signal, the method comprising:
 providing a clock signal to a coupling circuit;
 receiving an input signal with a sampling transistor, where
 the sampling transistor provides
 a first base receiving the input signal, and
 a first emitter coupled to receive the clock signal from
 the coupling circuit; and
 receiving the clock signal at an impulse transistor of the
 coupling circuit, wherein the impulse transistor provides
 a second base receiving the clock signal,
 a second collector connected to a voltage, and
 a second emitter of the impulse transistor coupled to
ground.
2. The method of claim 1, wherein an inductor or a
 transmission line is used to couple the second emitter of
 the impulse transistor to ground.
3. The method of claim 1, wherein after the clock signal
 enters a high state, a second emitter voltage of the first
 emitter approaches a steady state of 0V, and
 when the clock signal subsequently falls to a low state, the
 second emitter voltage provides a negative impulse.
4. The method of claim 3, wherein the negative impulse
 from the second emitter causes the sampling transistor to
 turn on during the negative impulse and output a sampled
 signal.
5. The method of claim 4, wherein the sampled signal is
 provided to a voltage follower or buffer to decouple the
 sampled signal from a following stage.
6. The method of claim 4 further comprising:
 receiving the sampled signal at a post-sampling block;
 inverting the sampled signal to create an inverted signal;
 and
 generating an output signal with a sample and hold circuit,
 wherein the output signal rising to a high hold state
 when the inverted signal rises, and the output signal is
 held at the high hold state for a period of time sufficient
to digitize.
7. The method of claim 6, wherein the post-sampling
 block provides a buffer acting as a voltage shifter.
8. The method of claim 6 further comprising the step of
 buffering the sampled signal received by the post-sampling
 block prior to the inverting step.
9. The method of claim 3, wherein the negative impulse
 has a duration of 100 picoseconds or less.
10. The method of claim 1, wherein a fall time of the clock
 signal is 8 psec or shorter.
11. An impulse sampler comprising:
 a coupling circuit receiving a clock signal; and
 a sampling transistor receiving an input signal, wherein
 the sampling transistor comprises
 a first base of the sampling transistor receiving the
 input signal, and
 a first emitter of the sampling transistor coupled to
 receive the clock signal from the coupling circuit; and
 an impulse transistor of the coupling circuit, wherein the
 impulse transistor comprises
 a second base of the impulse transistor receiving the
 clock signal,
 a second collector of the impulse transistor connected
to a voltage, and
 a second emitter of the impulse transistor coupled to
 ground.
12. The impulse sampler of claim 11, further comprising:
 an inductor or a transmission line coupling the second
 emitter of the impulse transistor to ground.
13. The impulse sampler of claim 12, wherein a second
 emitter voltage of the second emitter approaches a steady
 state of 0V after the clock signal enters a high state, and
 when the clock signal subsequently falls to a low state, the
 second emitter voltage provides a negative impulse.
14. The impulse sampler of claim 12, wherein the nega-
tive impulse from the second emitter causes the sampling
 transistor to turn on during the negative impulse and output
 a sampled signal.
15. The impulse sampler of claim 14 further comprising:
 a post-sampling block receiving the sampled signal;
 an amplifier for inverting the sampled signal to create an
 inverted signal, and
 a sample and hold circuit receiving the inverted signal
 and generating an output signal, wherein the output signal
 rises to a high hold state when the inverted signal rises,
 and the output signal is held at the high hold state for a
 period of time sufficient to digitize.
16. The impulse sampler of claim 15, wherein the post-
sampling block provides a buffer acting as a voltage shifter.
17. The impulse sampler of claim 16 further comprising:
 a buffer for receiving the sampled signal prior to the ampli-
 fier.
18. The impulse sampler of claim 14, wherein the negative
 impulse has a duration of 100 picoseconds or less.
19. The impulse sampler of claim 12, wherein the input
 signal provided to the sampling transistor is biased to cause
 the sampling transistor to be off when a first emitter voltage
 of the first emitter is 0V.
20. The method of claim 14, wherein a fall time of the clock
 signal is 8 psec or shorter.