ABSTRACT

Ultra-short pulse detection. At least some example embodiments are methods including: receiving by an antenna a series of ultra-short pulses of electromagnetic energy at a repetition frequency, the receiving creates a pulse signal; self-mixing or intermodulating the pulse signal by applying the pulse signal to a non-linear electrical device, thereby creating a modulated signal; and filtering the modulated signal to recover a filtered signal having an intermodulated frequency being the repetition frequency.

20 Claims, 6 Drawing Sheets
References Cited

U.S. PATENT DOCUMENTS

5,998,781 A1 * 12/1999 Vawter H03C 1/24 250/227
6,426,716 B1 * 7/2002 McEwan G01S 13/04 329/311
8,849,611 B2 * 9/2014 Haviland B82Y 35/00 250/334
8,855,247 B2 * 11/2014 Letarte B82Y 20/00 359/326
9,780,889 B1 * 10/2017 Margulis H04B 17/11 703/2
2008/0249417 A1 * 10/2008 Averkiou A61B 8/00 703/2
2012/0176595 A1 * 7/2012 Van Der Lee G01S 7/483 356/409
2012/0326912 A1 * 12/2012 Aoyagi G01S 7/023 342/21

OTHER PUBLICATIONS

M. Assefzadeh and A. Babakhani, “Broadband 0.03-1.032THz Signal Generation and Radiation Based on a Fully-Integrated 4x2 Impulse Radiating Array in 90nm SiGe BiCMOS,” 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Copenhagen, 2016, 2 pages.*

M.M. Assefzadeh and A. Babakhani, “Broadband 0.03-1.032THz Signal Generation and Radiation Based on a Fully-Integrated 4x2 Impulse Radiating Array in 90nm SiGe BiCMOS,” 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Copenhagen, 2016, 2 pages.

FIG. 1
FIG. 6
RECEIVING BY AN ANTENNA A SERIES OF PULSES OF ELECTROMAGNETIC ENERGY, EACH PULSE HAVING A PULSE WIDTH OF 100–PICOSECONDS (ps) OR LESS, THE SERIES OF PULSES HAVING A REPETITION FREQUENCY OF GREATER THAN 100 MEGAHERTZ, AND THE ELECTROMAGNETIC ENERGY AT A CARRIER FREQUENCY OF 10 GIGAHERTZ OR ABOVE, THE RECEIVING CREATES A PULSE SIGNAL.

INTERMODULATING THE PULSE SIGNAL BY APPLYING THE PULSE SIGNAL TO A NON–LINEAR ELECTRICAL DEVICE, THE INTERMODULATION CREATES A MODULATED SIGNAL.

FILTERING THE MODULATED SIGNAL TO RECOVER A FILTERED SIGNAL HAVING AN INTERMODULATED FREQUENCY BEING THE REPETITION FREQUENCY.

AMPLIFYING THE DIFFERENCE SIGNAL BY WAY OF A BASEBAND AMPLIFIER.

UTILIZING THE DIFFERENCE SIGNAL AS A CLOCK FOR ELECTRICAL DEVICES WITHIN 2 CENTIMETERS OF THE NON–LINEAR ELECTRICAL DEVICE.

FIG. 7
1

METHODS AND RELATED SYSTEMS OF ULTRA-SHORT PULSE DETECTION

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 62/349,360 filed 13 Jun. 2016, titled “Ultra-Short Pulse Detection Based on a Nonlinear Self-Mixing Scheme,” which provisional application is incorporated by reference herein as if reproduced in full below.

GOVERNMENT INTEREST

None.

BACKGROUND

Distribution of clock signals to multiple interrelated components is a challenging endeavor as clock frequencies increase. For example, in computer systems high speed clock signals propagate along metallic traces such that each individual distributed element of the computer system is provided a suitable clock signal. However, clock signals are subject to reflections, interference, standing wave phenomenon, and signal degradation, and thus the engineering aspects of clock distribution along metallic traces is an area of specialization in engineering in- and-of itself. Relatedly, where multiple spatially distributed objects need a uniform clock signal (e.g., individual receiving elements of a multi-element electromagnetic receiving antenna array), providing a uniform clock signal to the spatially distributed objects is challenging.

Some solutions attempt to distribute the clock among multiple distributed elements wirelessly by broadcasting a continuous wave source, with the distributed element receiving the continuous wave source and producing a clock signal therefrom. However, a wirelessly broadcast continuous wave source is subject to the multi-path phenomenon, where the versions of the signal arrive at the distributed element after taking different paths (e.g., direct path, reflection off buildings or the sky). Thus, the received signal may have significant timing jitter.

SUMMARY

At least some of the example embodiments are methods including: receiving by an antenna a series of pulses of electromagnetic energy, each pulse having a pulse width of 100 picoseconds (ps) or less (e.g., 10 ps, or 8 ps), the series of pulses having a repetition frequency of greater than 100 Mega-Hertz (e.g., between 1 Giga-Hertz (GHz) and 10 GHz inclusive), and the electromagnetic energy at a carrier frequency of 10 Gigahertz (GHz) or above; the receiving creates a pulse signal; intermodulating the pulse signal by applying the pulse signal to a non-linear electrical device, the intermodulation creates a modulated signal; filtering the modulated signal to recover a filtered signal having an intermodulated frequency being repetition frequency.

Other example embodiments electrical devices including: a substrate that defines a length and width; an antenna disposed on the substrate, the antenna has a center frequency above 10 Gigahertz (GHz); a broadband amplifier disposed on the substrate, the broadband amplifier defines an input lead and an output lead, the input lead coupled to the antenna; a non-linear electrical device disposed on the substrate, the non-linear electrical device defines an input lead and an output lead, the input lead of the non-linear electrical device coupled to the output lead of the broadband amplifier; an electrical filter disposed on the substrate, the electrical filter defines an input lead and an output lead, the input lead of the electrical filter coupled to the output lead of the non-linear electrical device, and the electrical filter has upper cutoff frequency of about 10 GHz; and a baseband amplifier disposed on the substrate, the baseband amplifier defines an input lead and an output lead, the input lead of the baseband amplifier coupled to the output lead of the electrical filter.

BRIEF DESCRIPTION OF THE DRAWINGS

For a detailed description of example embodiments, reference will now be made to the accompanying drawings (not necessarily to scale) in which:

FIG. 1 shows a block diagram of a system in accordance with at least some embodiments;
FIG. 2 shows a perspective view of an electrical device in accordance with at least some embodiments;
FIG. 3 shows a circuit diagram of a broadband amplifier in accordance with at least some embodiments;
FIG. 4 shows a circuit diagram of a non-linear electrical device and electrical filter in accordance with at least some embodiments;
FIG. 5 shows a frequency domain plot of the power spectrum of the electrical pulse signal in accordance with at least some embodiments;
FIG. 6 shows a circuit diagram of a baseband amplifier and buffer circuit in accordance with at least some embodiments; and
FIG. 7 shows a method in accordance with at least some embodiments.

DEFINITIONS

Various terms are used to refer to particular system components. Different companies may refer to a component by different names—this document does not intend to distinguish between components that differ in name but not function. In the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . ”. Also, the term “couple” or “couples” is intended to mean either an indirect or direct connection. Thus, if a first device couples to a second device, that connection may be through a direct connection or through an indirect connection via other devices and connections.

“Non-linear” in reference to an electrical device shall mean that a relationship of an input signal applied to the electrical device and a corresponding output signal created by the electrical device does not have a straight-line line relationship, but is continuous.

“Bow-tie antenna” shall mean an antenna that resides in a plane, and when the antenna is viewed from above the plane along a line perpendicular to the plane and centered within the bow-tie antenna, the bow-tie antenna takes the shape of a bow tie (e.g., two triangles whose apices point toward each other).

“Varactor diode defines a first capacitance and a second capacitance” shall mean that varactor diode, based on externally applied voltage, may have the first capacitance or the second capacitance, but shall not be read to require both the first and second capacitance simultaneously present.
DETAILED DESCRIPTION

The following discussion is directed to various embodiments of the invention. Although one or more of these embodiments may be preferred, the embodiments disclosed should not be interpreted, or otherwise used, as limiting the scope of the disclosure, including the claims. In addition, one skilled in the art will understand that the following description has broad application, and the discussion of any embodiment is meant only to be exemplary of that embodiment, and not intended to intimate that the scope of the disclosure, including the claims, is limited to that embodiment.

Various embodiments are directed to methods and related systems for receiving pulse signal 108. In example systems, when the amplitude is non-zero between about 40 GHz and about 60 GHz. It is noted that the amplitude envelope) of the periodic signal 108 is shown in relation to further example parameters discussed below (e.g., pulse width) are not necessarily to scale. In the idealized time-domain representation, pulses of energy of the periodic signal 108 are shown as ideal square-wave pulses 110 by way of a dashed line. The constructive and destructive interference between the two sources creates the pulse signal. Because of noise, first movement and last movement may be difficult to discern, and thus other trigger features are possible. Thus, other examples of features defining the pulse width may comprise: first zero crossings; last zero crossings; first positive peaks; last positive peaks; or the time between respective the half-power points. The repetition period defines the repetition frequency of the pulses being the inverse of the period T (i.e., repetition frequency of the pulses P = 1/T). In example cases, the repetition frequency is greater than 100 MHz, in some cases greater than 1 GHz, and in other cases the repetition frequency is between 1 GHz and 10 GHz inclusive.

Still referring to FIG. 1, each pulse receiver circuit 106 receives a portion of the energy of the pulse signal 104, and creates or recovers therefrom a clock signal 112. In the example systems, the clock signal 112 has a frequency being the repetition frequency of the pulses 110. Considering the case of the pulse signal 104 created by interference of two separately broadcast electromagnetic sources, the frequency of the clock signal 112 is the difference in frequency between the two broadcast electromagnetic sources (more specifically, the absolute value of the difference in frequency between the two broadcast electromagnetic sources to avoid negative frequencies). For example, when one signal broadcasts at 46 GHz and the second broadcasts at 48 GHz, the repetition frequency and thus the frequency of the clock signal is 2 GHz. When one signal broadcasts at 43 GHz and the second broadcasts at 49 GHz, the clock signal has a frequency of 6 GHz. Finally, when one signal broadcasts at 45 GHz and the second broadcasts at 53 GHz, the clock signal has a frequency of 10 GHz. The specification now turns to explanation of an example pulse receiver circuit 106.
with at least some embodiments. In particular, FIG. 2 shows a substrate 200 that defines a length L, a width W, and a thickness T. In example cases, the substrate is a silicon substrate, and the various devices constructed thereon implement the functionality. For example, the various transistor devices may be implemented in the form of 0.13 micrometer (μm) SiliconGermanium (SiGe) Bi-Complementary metal oxide semiconductor (BiCMOS) technology. In example cases, the length L and width W are each 2.0 millimeters (mm) or less, and in a specific example system the total area (i.e., length L times width W) is 1.89 mm². For purposes of explanation the various devices are conceptually divided into an antenna 202, a broadband amplifier 204 (shown in block diagram form), a non-linear electrical device 206 (shown in block diagram form), an electrical filter 208 (shown in block diagram form), a baseband amplifier 210 (shown in block diagram form), and a buffer circuit 212 (shown in block diagram form). The antenna 202 is electrically coupled to the broadband amplifier 204. The broadband amplifier 204 is electrically coupled to the non-linear electrical device 206. The non-linear electrical device 206 is electrically coupled to the electrical filter 208. The electrical filter is electrically coupled to the baseband amplifier 210. The baseband amplifier 210 is electrically coupled to the buffer circuit 212. The buffer circuit 212 produces the clock signal 112 (FIG. 1), which clock signal may be electrically coupled off the device by way of the bond pad 214. As will be discussed more below, various aspects of the pulse receiver circuit 106 may be controllable or adjustable (e.g., bias voltages, amplifier center frequency adjustments), and thus the substrate further comprises bond pads 216, 218, 220, 222, 224, 226 and 228 to which tuning and bias signals (e.g., voltages) may be applied. A supply voltage VCC may also be applied by way of pad 230. Each of the components will be discussed in turn, starting with the antenna 202.

Antenna 202 is a metallic material disposed on the substrate and designed to receive propagating electromagnetic energy (e.g., propagating through air). In example systems, the antenna 202 is a broadband antenna with a center frequency above about 10 GHz, in one case the center frequency of the antenna 202 is between about 40 GHz and about 60 GHz, and in a specific example case the center frequency of the antenna 202 is about 50 GHz. As shown in the example system, the antenna 202 may be implemented as a bow-tie antenna, but any antenna design that can suitably receive electromagnetic energy at the frequency of the periodic signal 108 (FIG. 1), as well as within a range of frequencies around the frequency of the periodic signal 108, may be used. The antenna 202 thus receives and creates an electrical version of the pulse signal. The antenna 202 couples to the broadband amplifier 204.

Broadband amplifier 204 is disposed on the substrate and electrically couples to the antenna 202. FIG. 3 shows a circuit diagram of a broadband amplifier 204 in accordance with at least some embodiments (and also includes the antenna 202 for convenience of the discussion). In particular, the broadband amplifier 204 defines input leads 300 and output leads 302. The input leads 300 are coupled to the antenna 300 by way of circuit traces, and in an example case the circuit traces have lengths of 167 μm. The example broadband amplifier 204 of FIG. 3 is designed and constructed to have a peak gain of about 28 deci-Bells (dB) in the frequency range of about 40 GHz to about 60 GHz, and a center frequency of 50 GHz. The example broadband amplifier 204 comprises four identical stages, but only one stage 304 is specifically delineated. The main elements of the example stage 304 are two Bipolar Junction Transistors (BJTs) 306 and 308 (here NPN transistors, and hereafter just transistors 306 and 308) arranged in a push-pull configuration. The 8 μm dimension shown on the drawing designates the emitter width of each of the transistors 306 and 308 in the example circuit. Throughout the NPN various drawings lengths depicted proximate to BJT transistors designate the respective emitter widths (or drain widths for field effect transistors (FETS)). The amplifiers 306 and 308 are coupled to the voltage source VCC through electrical traces of the noted lengths, and are coupled to return or ground by way of transistor 310. Transistor 310 cooperates with transistor 312 to provide a non-zero bias voltage at the emitters of the transistors 308 and 306 in spite of small swings in the voltage source VCC. The non-zero bias voltage at the emitter is provided such that the amplified signal created by the stage 304 rides the non-zero bias voltage (and thus eliminating the need for a negative VCC). The output signal from the stage 304 feeds next stage (not specifically delineated), and so on through the example four stages of the broadband amplifier 204, thus producing an amplified version of the electrical pulse signal.

FIG. 4 shows a circuit diagram of a non-linear electrical device 206 and electrical filter 208 in accordance with at least some embodiments. In particular, the circuits of FIG. 4 couple to the output leads 302 (FIG. 3) of the broadband amplifier 204. In the example circuit, the coupling to the broadband amplifier 204 is by way of electrical traces on the substrate having lengths of 100 μm as shown. The example circuit of FIG. 4 also shows a load balancing circuit 400. As the name implies, the load balancing circuit 400 balances the impedance as between the two leads 402. The example load balancing circuit 400 comprises an NPN transistor 404 having its collector coupled to a voltage Vd by way of a resistor 406. The base of the transistor 404 is coupled to one of the leads 402, and the emitter of the transistor 404 is capacitively coupled to the second of the leads 402. In some cases, the voltage Vd is coupled to VCC within the pulse receiver circuit, but in other cases the voltage Vd may be externally applied (such as by way of bond pad 216) such that the load balancing may be externally controlled. The load balancing circuit thus creates a single lead that becomes the input lead 408 of the non-linear electrical device 206.

The non-linear electrical device 206 in the example systems is a BJT (NPN) transistor 410 having an emitter width of 3.5 μm. The base of the transistor 410 receives a bias electrical current by virtue of the base being coupled to a bias voltage Vb by way of resistor 412. In example cases, the bias voltage Vb is externally supplied by way of one of the bond pads (e.g., bond pad 218). The transistor 410 has its collector coupled to VCC by way of resistor 414, in this example case having a resistance of 1.5 kOhms. The collector and emitter thus define the output leads 416 of the non-linear electrical device 206.

In the example system, the amplified electrical pulse signal applied to the non-linear electrical device 206 creates a modulated signal on the output leads 416. A description of the modulated signal relies on a description of the frequency components of the pulse signal.

FIG. 5 shows a frequency domain plot of the power spectrum of the electrical pulse signal. In order to explain the relevance of FIG. 5, consider that a single and short (e.g., 8 ps) pulse of energy has a Gaussian-like continuous spectrum that may include frequencies into the Tera-Hertz range. However, when the pulses are created with a fixed period T (see the time domain representation of FIG. 1), the frequency spectrum becomes a Gaussian-modulated “comb” structure as shown in FIG. 5. That is, the frequency spectrum
largely resolves to individual and discrete frequency components as shown in FIG. 5. Hold that thought. In electronic devices, when a signal comprising two or more frequencies is applied to a non-linear electrical device, the output signal of the non-linear electrical device includes a parasitic effect in the form of intermodulation. That is, the two or more frequencies interact through the non-linear electrical device to create harmonic signals with frequency components being the sum and difference of the two frequencies, and integer multiples of the sum and difference. In most cases, the harmonics are parasitic and are removed by filtering. In accordance with various embodiments, however, the otherwise parasitic harmonics are utilized.

Returning to FIG. 4, when applied to the non-linear electrical device 206 the electrical pulse signal (comprising the frequency spectrum of the Gaussian-modulated comb of FIG. 5) produces harmonics, one harmonic being the repetition frequency of the pulses 110. In the example case of FIG. 4, the transistor 410 is biased by way of the Vg and resistor 412 into a non-linear region such that the modulated signal existing between the output leads 416 includes a component with a frequency being the repetition frequency of the pulses 110 (among others). In an example case of the pulse stream being created by the interference of two electromagnetic waves as discussed above (e.g., 43 GHz and 49 GHz), non-linear electrical device 206 produces a harmonic having a frequency of the difference between the two frequencies (e.g., for 43 GHz and 49 GHz, the difference or repetition frequency is 6 GHz). In the example setup as shown in FIG. 4, the greatest non-linearity of the transistor 410 occurs at a Vg of about 0.85V, but the particular design of the transistor 410 will change the bias voltage that creates the greatest non-linearity. Stated otherwise, the non-linear electrical device 206 intermodulates (or self-mixes) the electrical pulse signal to create the modulated signal. One of ordinary skill in the art, with the benefit of this disclosure, now understands that the non-linear electrical device 206 in the form of transistor 410 is merely an example, and other non-linear electrical devices (e.g., properly biased diodes) may be equivalently used.

The next portion of the example pulse receiver circuit 106 is the electrical filter 208. In particular, the electrical filter 208 is disposed on the substrate 200 (FIG. 2) and defines input leads 420 and an output lead 422. The input leads 420 electrically couple to the non-linear electrical device 206, specifically the output leads 416. In the example system, the electrical filter 208 length between the non-linear electrical device 206 and the electrical filter 208 is 55 μm. Further in example systems, the electrical filter 208 is designed and constructed to filter the modulated signal from the non-linear electrical device 206 to recover a signal having an intermodulated frequency being the repetition frequency of the pulses 110. The signal remaining after the filtering may be referred to as a filtered signal.

In example cases, and as shown in FIG. 4, the electrical filter 208 may be a low-pass filter. More particularly, the electrical filter 208 may be a Chebyshev low-pass filter with a cut-off frequency of about 10 GHz. However, bandpass filters with upper cut-off frequencies of about 10 GHz may be equivalently used. In the example case of FIG. 4, the electrical filter 208 comprises two inductors 424 and 426 coupled in series, each inductor being about 500 pico-Henries (pH). The electrical filter 208 further comprises a first capacitor 428 coupled between the inductors 424 and 426, and a second capacitor 430 coupled downstream of the second inductor 426. In the example case, each capacitor has a capacitance of 1 pico-Farad (pF).

FIG. 6 shows a circuit diagram of a baseband amplifier 210 and buffer circuit 212 in accordance with at least some embodiments. In particular, the baseband amplifier 210 is disposed on the substrate 200 (FIG. 2), and the baseband amplifier 210 defines an input lead 600 and an output lead 602. The input lead 600 is coupled to the electrical filter 208 (FIGS. 2 and 4) by way of a circuit trace, and in an example case the circuit trace has a length of 300 μm. The example baseband amplifier 210 of FIG. 6 has two stages 604 and 606, but any suitable number of stages may be used. As discussed more below, the baseband amplifier 210 has a tunable center frequency in the range of between 100 MHz and 10 GHz inclusive, and in the example case between 1 GHz and 10 GHz inclusive. In the design shown in FIG. 6, the baseband amplifier has a gain of 27.5 dB when tuned at 5 GHz.

Referring to the first stage 604 as representative of both stages 604 and 606, the first stage 604 has a stabilizing network 608 in the form a parallel connected 50 Ohm resistor 300 femto-Farad (fF) capacitor. Downstream of the stabilizing network 608 resides transistor 610 (here an NPN BJT). In the example first stage 604, the transistor 610 has an emitter width of 4.7 μm. The base of the transistor 610 receives a biasing electrical current by virtue of the base being coupled to a bias voltage Vb by way of resistor 612. In example cases, the bias voltage Vb is externally supplied by way of one of the bond pads (e.g., bond pad 220). The collector of transistor 610 is coupled to VCE by way of an inductor 614 having an inductance of 10 nano-Henries (nH). The drain of transistor 610 is coupled to common or ground. The collector of the transistor 610 is further coupled to variable capacitive network to enable the control of the center frequency of the first stage 604 (and thus the baseband amplifier 210).

Still referring to FIG. 6, in the example system the variable capacitance to enable control of the center frequency is implemented in the form of two parallel capacitive networks. The first capacitive network comprises varactor diode 616 (hereafter just varactor 616) to provide selectable capacitance. The varactor 616 is coupled on one side to the collector of the transistor 610, and the varactor 616 is coupled on a second side to a bias voltage VB. In example cases, the bias voltage VB is externally supplied by way of one of the bond pads (e.g., bond pad 222). Thus, by controlling the bias voltage VB the capacitance presented by the varactor 616 may be controlled. In the example system, the varactor 616 may provide capacitance in the range of 160 femto-Farads (fF) to 650 fF. Choosing any two capacitances in the range, the varactor 616 may be said to have a first capacitance and a second capacitance, but of course the capacitance may be almost infinitely controlled within the range and thus a plurality of capacitances is possible. The example circuit of FIG. 6 further comprises a second capacitive network comprising switch 618 and a second varactor 620. Switch 618 may be implemented as a metal oxide semiconductor (MOS) field effect transistor (FET) having its gate coupled to an externally accessible bond pad, and its source and drain coupled between the emitter of the transistor 610 and varactor 620. Thus, by application of an externally supplied voltage V3 to one of the bond pads (e.g., bond pad 224) and thus the gate, the switch 618 may selectivity couple (and decouple) the varactor 620 and the emitter of the transistor 610. The varactor 620 is coupled on a second side to a bias voltage V4. In example cases, the bias voltage V4 is externally supplied by way of one of the bond pads (e.g., bond pad 226). Thus, by controlling the bias voltage V3 the capacitance presented by the varactor 616
may be controlled. In the example system, the varactor 616
may provide capacitance in the range of 160 fF to 650 fF. It
follows that the ranges of the capacitances provided by the
varactors 616 and 620, as well as the ability to selectively
couple and decouple the varactor 620, the center frequency
of the first stage 604 may be controlled, and in the example
system controlled in the range of 1 GHz to 10 GHz.

Before describing the buffer circuit 212, it is noted that the
first stage 604 and the second stage 606 of the baseband
amplifier 210 are shown connected by way of an electrical
trace of length 400 µm; however, the length of the electrical
trace to connect the two stages was dictated by physical
placement of the stages on the test circuit, and thus separat­
ing the stages is not required.

FIG. 6 further shows the buffer circuit 212. In particular,
the buffer circuit 212 is disposed on the substrate 200 (FIG.
2), and the buffer circuit 212 defines an input lead 622 and
an output lead 624. The input lead 622 is coupled to output
lead 602 of the baseband amplifier 210, and the output lead
624 is coupled to the bond pad 214 (FIG. 2). The buffer
circuit 212 is configured to drive a downstream electrical
load coupled to the output lead, where the downstream
electrical load has an impedance of around 50 Ohms. The
main element of the buffer circuit 212 is a MOSFET 626
having a drain width of 40 µm. The gate of the MOSFET 626
is electrically coupled to the input lead 622 by way of a DC
blocking capacitor (not specifically numbered). The gate of
the MOSFET 626 receives a bias voltage by virtue of the
gate being coupled to a bias voltage Vg by way of resistor
628. In example cases, the bias voltage Vg is externally
supplied by way of one of the bond pads (e.g., bond pad
228). The collector of the MOSFET 626 is coupled to VCC,
and the drain is coupled to the output lead 624.

In order to help control the impedance of the buffer circuit
212 presents on the drain of the MOSFET 626 (and the
output lead 624), the example buffer circuit implements
FETs 630 and 632. In particular, the gates of FETs 630 and
632 are coupled together, and the gates are coupled to the
drain of the FET 630. The collector of FET 630 couples to
VCC through a 180 Ohm resistor (not specifically num­
bered), and the drain of FET 630 couples to common or
ground.

In a test pulse receiver circuit 106 created as shown on the
various drawings and discussed, the pulse receiver circuit
106 was able to extract and create the clock signal 112. In
an example situation, the periodic signal 108 had a fre­
quency of 48 GHz and a jitter of 360 femto-seconds (fssec), and a repetition rate of the pulses was set at 2.0 GHz
by simultaneously broadcasting a 46 GHz signal and 48
GHz signal, with each of the 46 GHz signals having a power
set at 10 dBm and broadcast horns at a distance 10 cm from
the pulse receiver circuit 106. The pulse receiver circuit 106
constructed as discussed herein extracted the clock signal
112 at a frequency of 2.0 GHz and a jitter of 376 fssec. For
the particular setup described, the output power of the pulse
receiver circuit 106 showed a straight line correlation to
input power until saturation occurred at about 18 dBm fed to
the broadcast horns.

FIG. 7 shows a method in accordance with at least some
embodiments. In particular, the method starts (block 700)
and comprises: receiving by an antenna a series of pulses
of electromagnetic energy, each pulse having a pulse width
of 100 picoseconds (ps) or less, the series of pulses having a
repetition frequency of greater than 1 Mega-Hertz, and the
electromagnetic energy at a carrier frequency of 10 Giga-
Hertz or above; the receiving creates a pulse signal (block
702), intermodulating the pulse signal by applying the pulse
signal to a non-linear electrical device, the intermodulation
creates a modulated signal (block 704); filtering the modu­
lated signal to recover a filtered signal having an intermu­
lated frequency being the repetition frequency (block 706);
amplifying the difference signal by way of a baseband
amplifier (block 708); and utilizing the filtered signal as a
clock for electrical devices within 2 centimeters of the
non-linear electrical device (block 710). Thereafter, the
method ends (block 712).

The above discussion is meant to be illustrative of the
principles and various embodiments of the present inven­tion.
Numerous variations and modifications will become
apparent to those skilled in the art once the above disclosure
is fully appreciated. It is intended that the following claims
be interpreted to embrace all such variations and modifica­
tions.

What is claimed is:
1. A method comprising:
detecting by an antenna, electromagnetic waves incident
upon the antenna, the electromagnetic waves in the form of
a series of pulses, each pulse having a pulse width of
100 picoseconds (ps) or less, the series of pulses having a
repetition frequency of greater than 100
Mega-Hertz, and the electromagnetic waves at a carrier
frequency of 10 Gigahertz (GHz) or above, the receiv­
ing creates a pulse signal in electrical conductors
directly coupled to the antenna;
intermodulating the pulse signal by applying the pulse
signal to a non-linear electrical device, the intermodu­
lation creates a modulated signal; and
filtering the modulated signal to recover a filtered signal
having an intermodulated frequency being the repeti­tion
frequency.
2. The method of claim 1, wherein the receiving further
comprises receiving by way of a broadband antenna.
3. The method of claim 1, wherein the receiving further
comprises receiving by way of a bow-tie antenna having a
resonant frequency of about 50 GHz.
4. The method of claim 1, wherein the intermodulating
further comprises applying the pulse signal to a NPN
transistor biased into a non-linear region.
5. The method of claim 1 further comprising amplifying
the filtered signal by way of a baseband amplifier.
6. The method of claim 5, wherein amplifying the filtered
signal further comprises setting a center frequency of the
baseband amplifier within a range of frequencies between
about 1 GHz and about 10 GHz, the setting by applying
a voltage to a varactor diode.
7. The method of claim 1, wherein the filtering further
comprises low-pass filtering with a filter having a cut-off
frequency of about 10 GHz.
8. The method of claim 7, wherein the low-pass filtering
further comprises filtering with a fourth order Chebyshev
low-pass filter.
9. The method of claim 1 further comprising utilizing the
filtered signal as a clock for electrical devices within 2
centimeters of the non-linear electrical device.
10. The method of claim 1, wherein receiving the series
of pulses of electromagnetic energy further comprises
receiving the series of pulses each pulse having a pulse
width of about 8 ps.
11. An electrical device comprising:
 a substrate that defines a length and width;
an antenna disposed on the substrate, the antenna has a
center frequency above 10 Gigahertz (GHz),
the antenna configured to detect a series of pulses of
electromagnetic waves, the series of pulses having a
repetition frequency of greater than 100 Mega-Hertz, and the detection creates a pulse signal;
5 a broadband amplifier disposed on the substrate, the broadband amplifier defines an input lead and an output lead, the input lead coupled to the antenna;
10 a non-linear electrical device disposed on the substrate, the non-linear electrical device defines an input lead and an output lead, the input lead of the non-linear electrical device coupled to the output lead of the broadband amplifier, the non-linear electrical device configured to self-mix the pulse signal and thereby create a modulated signal;
15 an electrical filter disposed on the substrate, the electrical filter defines an input lead and an output lead, the input lead of the electrical filter coupled to the output lead of the non-linear electrical device, and the electrical filter has upper cutoff frequency of about 10 GHz, the electrical filter configured to filter the modulated signal and thereby recover a clock signal having a frequency being the repetition rate; and
20 a baseband amplifier disposed on the substrate, the baseband amplifier defines an input lead and an output lead, the input lead of the baseband amplifier coupled to the output lead of the electrical filter.
12. The electrical device of claim 11, wherein the antenna further comprises a bow-tie antenna, and the center frequency of the bow-tie antenna is about 50 GHz.
13. The electrical device of claim 12, wherein the broadband amplifier has a peak gain of 28 deci-Bells (dB) in the frequency range of about 40 GHz to about 60 GHz.
14. The electrical device of claim 11, wherein the non-linear electrical device further comprises:
a NPN transistor on the substrate that defines a base, a collector, and an emitter, the base defines the input lead of the non-linear electrical device, the collector defines the output lead; and
20 a resistor defined on the substrate, the resistor coupled between a voltage rail and the base, the resistor has a resistance configured to provide current to the base to bias the NPN transistor into a non-linear region of the NPN transistor.
15. The electrical device of claim 11, wherein the electrical filter further comprises a low-pass filter.
16. The electrical device of claim 15, wherein the low-pass filter further comprises a 4th order Chebyshev low-pass filter.
17. The electrical device of claim 11, wherein the baseband amplifier further comprises:
an inductor defined on the substrate; and
20 a varactor diode defined on the substrate, the varactor diode coupled to the inductor, and the varactor diode defines a first capacitance and a second capacitance; wherein the baseband amplifier is configured to have a first center frequency at the first capacitance, and a second center frequency at the second capacitance, the first center different than the second center frequency.
18. The electrical device of claim 11, wherein the baseband amplifier further comprises a plurality of stages, and the baseband amplifier is configured to have a selectable first center frequency and second center frequency, the first center frequency different than the second center frequency.
19. The electrical device of claim 11, wherein the length and width of the substrate are each 2.0 millimeters or less.
20. The electrical device of claim 11, further comprising a buffer circuit disposed on the substrate, the buffer circuit defines an input lead and an output lead, the input lead of the buffer circuit coupled to the output lead of the baseband amplifier, and buffer circuit configured to drive a load along the output lead of the buffer circuit of about 50 Ohms.

* * * * *