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ABSTRACT 

This stu~y concerns the use of conjugate residual methods for the solution 

or nonsymmetric linear systems arising from seismic inverse problems. We focus 

on an application which has two distinguishing features. The first feature is that 

the linear system is not readily available. The second feature is that the linear 

system is almost symmetric. We state and prove a new convergence theorem for 

a class or Generalized Conjugate Residual methods which shows that in some 

cases the perturbed symmetric problem cnn be solved with an error bound 

similar to the one for the symmetric case. 
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CHAPTER 1 

Introduction 

1.1. Statement or the Problem 

This study concerns the use of conjugate residual methods for the solution 

of almost symmetric linear system,; such as those arising from seismic inverse 

problems. The conjugate residual method was originally developed for 

symmetric positive definite systems, and is usually both efficient and effective 

over a wide range of problems. Many important physical problems, however, 

give rise to nonsymmetric linear systems (see Concus and Golub (1076), 

Vinsome (1076), Symes (1082)). In this study, we focus on an application arising 

from a seismic inverse problem which has two distinguishing features. The first 

feature is that the linear system is not readily available. This means that for 

most practical problems we must resort to an iterative procedure. The second 

feature is that the linear system arising from the seismic inverse problem ,js 

nearly symmetric. 

Many authors have attempted to generalize the conjugate gradient methods 

to nonsymmetric systems. One such cxitmplc is the class of Gen!"rnli?.ed 

Conjugate Residual (GCR) methods suggested by Eisenstat, Elman, and Schultz 

{l!l83). They prove convergence, along with a rate of convergence, for these 
1 
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meLhods. The convergence rate derived for the GCR methods is similar to the 

couvergeuce rate for steepest desceut, which cau be con:;iderably slower than the 

rate for the conjugate gradient methods. Since the uonsymmetries in our 

a.1,plicatiou arc small, it seems plau::;ible that the couvcrgeuce rate for the 

uonsymmetric coujugate gradient methods might be similar to the convergence 

rate for the symmetric problem. In this l:ltudy, we state and prove a new 

convergence theorem for a class of GCH methods which shows that iu some 

cases the perturbed symmetric problem can be solved with an error bound 

similar to the ouc for the symmetric case. 

1.2. Motivation 

The velocity inversion problem is a member of a class of problems known 

as sebmic inverse problems. The idea behind the seismic inverse problem is .to 

determine a set of parameters describing a medium, such as the earth, Crom 

another set of data usually given on the boundary of the medium. A typical 

example is the exploration for oil whereby small charges of explosives are set off 

near the ground and the resulting echoes are recorded at receivers placed near 

the surface at certain distances away from the explosion. The object of the 

seismic experiment is to determine a set of parameters that describe the 

structure of the earth from the data taken at the receivers. 

Uy the velocity iuversion problem we mean Lhe problem of determiuiug the 

sound speed structure of a medium from its response to an energy source. 

Consider the one-dimensional velocity model: 

(-
1
-8,2-8,2)11 =0, 

c2(z) 

c(0)o,11 = -/ (t), 

11 =O, 

z > o, 

z = 0, 

z > o, t < o. 

3 

(1.2.1) 

Herc c(z) is the wave speed, /{t) is a source wavelet, and 11(z,t) is the wavefield. 

In our example l{t) is the energy source, that is, the explosion. The wavelield 

u(z, t) may be thought of as displacement or prcMSure. In this study we assume 

/ ( t) ii:i given and that c (0) is known from measurements taken near the surface. 

Define a seismogram by 

811(z.,) I . 
s(t) = at •=0 

The seismogram may be thought of as the pressure or displacement measured at 

the receivers after the explosive charge is set off. Notice that every quantity in 

the boundary value problem (1.2.1) is fixed, except for c(z), so that if the waye 

speed is varied then the wavefield 11(z,t) changes. Since the seismogram 

depends on u(z,1), it may be regarded as a function of c, that is, 

s = F(c). (1.2.2) 

The relation (l.2.2) is known as the forward problem. By the inverse problem 

we mean the problem of determining c given a seismogram s. 

As in most physical experiments, the data is known to have some noise. 

Under these conditions it is unlikely that we can lit the data exactly. Instead 



4 

we consider the least squares problem. 

min lls - F(c)ll 2
• (1.2.3) 

This is a nonlinear least squares problem. A natural choice to consider for 

solving this problem is some type or Newton method. For example consider the 

Gauss-Newton method 

J'J·6c = -J'(F(c)-s), (1.2.4) 

where J = DF(c), J' is the adjoint of J: 

<J'·x, y> = <x, J·y>, (1.2.5) 

and < x, y > denotes the L 2- inner product. In order to calculate a Gauss­

Newton step it is necessary to compute the actions of J and J' on vectors. 

Symes (rn85) shows that the action or Jon a vector is given by 

J(c)·6c = <DF(c)·6c,F(c)-s>. 

The gradient DF(c )·6c may be computed from the solution of the 

perturhallonal problem 

(-1-a2 - a2) {J - 26c a
2

u 
2( I I U - --

C Z) C3 8t2 

a,611 = o, z = 0, 
(1.2.6) 

611 = o, t < o, 

where 11(z,t) solvrs the boundary value problem (1.2.1). The gradient is then 

computed by 

5 

86u I DF( c )·£,c = 8t z=O· 

The adjoint is calculated by a similar process. 

Two remarks are in order. The first remark is that J ·6c is defined by the 

solution or a boundary value problem. The second remark is that each 

evaluation of J·6c is subject to a certain amount or discretization error. Both or 

these remarks also apply to the computation or the action or J' on a vector. 

Let us consider the consequences of the second remark. Assume that the 

boundary value problem (1.2.1) is discretized on a rectangular grid and solved 

by a finite-dilTerence method. Let the matrix A denote a discretization of J, 

and let the matrix A denote a discretization of the adjoint J'. Then we can 

write the discretized version or equation (1.2.4) as 

A Ax =Ab. (1.2.7) 

where A is an m Xn matrix, b is an m-dimensional vector, and xis ~. ll­

dimensional vector. Depending on the discretization used, both m and n can ht' 

very largC'. Typical vahtC's arC' m=I0,000, and n-=5,000. 

Notice that equation (1.2.4) yields a symmetric positive definite system. 

However, neither the matrix A nor the mRtrix A A is readily avRilahle, sin<'e the 

action of A on a vector must be computed from the solution of a boundRry 

value problem. Moreover, given the size of a typical problem, computing either 

matrix by using a set or basis vectors is entirely out or the question. Therefore 

direct methods for the solution or the discretized version or (1.2.4) can be ruled 
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out. 

Among the iterative methods available, the conjugate gradient algorithm 

vropoocd by lle:1tc11c11 aud Stiefel (IU52) 111 11. po11ular method for symmetric 

positive ddiuite systems. This approach also h118 the advantage that we do not 

have Lo access the elements of the matrix A directly. 

Unfortunately, the discretized equation (l.2.7) is not symmetric. When we 

discretize both J and J', we cannot hope to satisfy the adjoint relation (1.2.5) 

exactly for the operator.; A and A, since the discretization error.:1 generated by 

the computation of A and A are independent. lf (x ,Y) denotes the standard 12 

inner product, then 

(Ax, y) ~ (x, Ay ), 

that h;, A ~ AT. We can model this discretization error by the system 

Nx=ii, 
where 

N =(AT+ ET)A, 

ii = (A T + ET )b, 

(1.2.8) 

(1.2.0) 

(l.2.10) 

and the matrix E can be thought of as noise generated by the calculation of 

A T x. The matrix E is unrelated to the matrix A so that JV is uousy mmctric. 

Notice that for simplicity we have chosen Lo model the perturbed system as if 

the dbcrctizatiou error arose from the computation of AT x. 

7 

At lirnt glance, it appcnrs that if the discretization errors nn, "mall tl11·11 the 

behavior of the conjugate gradient method for this prolilcm might be similar to 

that for the 11ymmctric prolilem. Unfortunately this is uot the Cll,.';C. Symt•s 

(1082) h118 shown that even for small discretization error.:1, the standard 

conjugate gradient method applied to equation (1.2.7) may diverge. Au 

explanation of this behavior was provided by Dennis (1084). It is wcll-kuown 

that the conjugate gradient method may be viewed a.s a minimization algorithm 

applied to a certain quadratic functional. The conjugate gradient method 

minimizes this functional by computing a search direction and taking a step 

along thi::1 direction. In this application the search direction depends on the 

vector A T x. Since the calculation of A T x is contaminated by noise generated 

in the discretization process the search direction computed by the conjugate 

gradient method may not be a descent direction. Moreover, using the standard 

formulas for the conjugate gradient method (llestenes and Stiefel (1052)) the 

steplength will be positive, so that the new iterate must increase the function 

value. Therefore, the sequence of iterates generated by the conjugate gradient 

method on this problem is not guaranteed to converge to the minimizer, and 

worse the iterates may diverge. This suggests that we use a nonsymmetric 

version of the conjugate gradient method. 

Many author.; have worked on the problem of generaliziug the conjugate 

gradient method for 11un!:ly11111wtric systems. llowever, much uf thi:; work h11.s 

been in the field of elliptic equations, especially those problems arbiug in 



8 

reservoir engineering. Our application is dilTerent. The discretization errors can 

he adjusted drpending on how accurately we solve the various boundary value 

problems. Therefore, even though the problem is nonsymmetric, it is best 

thought of as a small perturbation of a symmetric operator. 

In Chapter 2, we define the notation used and review the basic linear 

algebra theory neces.sary in this study. Chapter 3 introduces Krylov space 

methods for the solution of linear systems. An example of such a method is the 

clas.s of Generalized Conjugate Residual (GCR) methods, proposed by Eisenstat, 

Elman and Schultz {1983). Among these methods, the truncated and restarted 

versions of GCR are discussed. In Section 3.4 we present some of the 

convergence theorems for these methods proved by Eisenstat, Elman and 

Schultz. The nonsymmetric problem is discussed in Chapter 4. We briefly 

review this field and present the main result of this study in Section 4.3. We 

show that the GCR method converges with a bound which deviates from the 

error bound for the symmetric case by a term which depends on the size of the 

nonsymmetry. An application of the main result for the restarted version of the 

GCR method is also presented. Several other applications for specinl 

distributions of eigenvalues arc presented in Section 4.4. In Chapter 5 we 

present some numerical results for test problems dealing with small 

perturbations to a symmetric operator. Chnpter 6 contains some conclnding 

remarks. 

g 

1.3. Goals 

In this study, we investigate t,he behavior of conjugate residual methods for 

the solution of almost symmetric linear systems such as those arising from the 

velocity inversion problem, with particular emphasis on the following factors: 

1) Robust modifications to conjugate residual methods in the 

presence of small errors. 

2) Generalizations of the Chebyshev analysis. 

3) A better understanding of the behavior of nonsymmetric conjugate 

residual methods for nearly symmetric problems. 



CHAPTER 2 

Notation and Preliminaries 

This chapter deals with notation and preliminaries used in this study. 

Section 2.1 introduces the notation. In Section 2.2 we briefly review the Lasic 

linear algebra theory necessary in this study. Section 2.3 discusses iterative 

methods for the t10lutio11 of linear systems. Matrix polynomiab, which are used 

extensively in later chapters, are also introduced in this section. 

2.1. Notation 

Let x and y be rtal n vectors, and let A be au n X n real matrix. By (x ,y) 

we mean the standard 12 inner product. The 12 norm is defined by 

llxl'2=(x,x'f. 

The set of eigenvalues, >.(A)= {>. 1(A ), · · · ,>.n(A )}, of a matrix A are 

the n roots of the characteristic equation, I A - >.I I = O, of A. Eigenvalues 

are ordered 

I >-, I ~ I >-2 I ~ · · · ~ I >-. I -

The i;pcc tral radiui;, p(A) of an II XII matrix A is de lined by 

10 

p(A) = max I A; I -
>., E >.(A) 

2.2. Basic Linear Algebra Theory 

11 

Much of the theory in thb study revolves around symmetric positive 

definite matrices. A symmetric matrix satisfie·~ the equation A = A T • The 

matrix A b said to be positive definite if 

(x,Ax) > 0 for all x cf 0. 

For nousymmetric matrices we deliue the splitting 

where 

A= M -R, 

M = _!_(A + AT), 
2 

R = - ½(A - AT). 

The matrix M is called the symmetric part of A; the matrix R is called the 

skew-Bymmetric part of A. Many of our proofs require that the symmetric part 

of A be positive definite. 

The condition of a matrix turns out to be an important concept. By !l'l ill-

conditioned matrix we mean a matrix where small changes in x may cause large 

changes in the product Ax. For any vector norm II· II, deliue a corresponding 

matrix uorm Ly 

IIA II= sup~ •t"ollxll· 
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In particular, it can be shown ( see Noble and Daniel (lll77) p. 442 ) that for the 

Euclidean vector norm II· II 2, the corresponding matrix norm is 

IIA ll2 = Vmax >.(AT A). 

Unless otherwise stated we will just write II A II to denote the Euclidean matrix 

norm. The condition number, ,c(A ), of a matrix A can now be defined by 

,c(A) = 11 A 11·IIk1 11. 

If the matrix is symmetric then it is straightforward to show that 

,c(A) = I >-1(A) I 

2.3. Iterative Methods 

Consider the system of iinear equations 

Ax= b. (2.2.1) 

Techniques for solving this system of linear equations are usually classified as 

either dirl'ct or itl'rative methods. A direct method is one which guarantees a 

solution to equation (2.2.1) in a finite number of operations. The number of 

·operations depends on the size of the system. If the matrix A is large then 

direct methods tc-nd to tnke considerable time and storage. This may be reducPd 

when the matrix A has a special structure, in which case, special direct methods 

may take advantage of the particular structure ( see DufT (JQ77) ). Regardless of 

the size or structure however, direcl, methods always assume that the coefficients 

13 

of the matrix A are available. This is not the case in our application. 

In our application, the entries of the matrix A are not readily available. 

However, we can compute the action of the matrix A on a vector by solving a 

boundary value problem. This leads us into the area of iterative methods. By 

an iterative method we mean any method which generates a sequence or 

approximations to the solution of equation (2.2.1). Iterative methods have the 

advantage that they do not require that the matrix A be stored. The 

disadvantage is that they may converge slowly or may even diverge for some 

applications. In particular, we are interested in polynomial-based iterative 

methods. These methods generate a sequence of iterates or the form 

Xt = x0 + P1 (A )(x - x0), (2.2.2) 

where Pt(A) is a polynomial in the matrix A of degree at most k. If we denote 

the residual rt by 

r1 = b - Axt, (2.:t.3) 

then equation (2.2.2) is equivalent to 

rt = Q1(A )ro- (2.2.4) 

Here Qt(A) is a polynomial in the matrix A of degree at most k, such that 

Q1(0) = 1. 

One important and useful fact about matrix polynomials is their behavior 

under orthogonal transformations. For any matrix polynomial /\ (-") , and any 

orl,hogonal matrix Q , if A = QT TQ, then 



l'1(A) = QTJ'1(1')Q. 

14 

(2.2.5) 

lf the matrix A is symmetric then it may Le diago111llizcd by au ortho1,011al 

matrix 1;o tl111t '/' -~ ding(>. 1, ,>..) . Att ll eo11sc11ue11ce e1p111tio11 (2.2.f>) 

si111plilil'S to 

P1(A) = QT diag(P1(>-i), · · · ,P1(>-. ))Q. 

In other word:; the matrix polynomial in A is reduced to a poly11omial in the 

real variables >.. 

Iterative 111cthods require a stoppi11g rule. Usually 11 measure is dcliued in 

terms of how clo:;e the 11pproximatiou is to the solution; the method ttrminates 

when this measure is small. We discuss two measures commonly used in the 

literature. 

For a syrnwetric and positive definite matrix A, deli11e the error functional 

E 1(x1 ) = (x - x1 ,A(x - xt}),,. = llx-x1 IIA, 

where x is the solution to the linear system (2.2.1 ). Although this appears to be 

a reasonable measure of the error, it suffers from two deticiencies. The first is 

that, in general, we do not know what the solution x is. The second is that the 

A-norm is only valid when the matrix A is positive definite. However, £ 1 will 

Le used in some of our convergence analyses. 

A sl'co11tl IIICiL~urc b l,ascd 011 th1• error fu11ction11l 

l:.' 2(x1 ) = (A (x - x1 ),A (x - It )f• = II b .4x1 II 2· 

15 

This error fu11ctio11nl is more practicnl for 111a11y iterntivc pron·dures si11l'e the 

residual is already computed. Thb measure is also used in our convergence 

1111alysis. 



CHAPTER 3 

Krylov Space Methods 

This chapter introduces Krylov space methods for the solution of linear systems. 

Section 3.1 defines a Krylov space method. In Section 3.2, we discuss the 

Generalized Conjugate Residual (GCR) algorithm and present some of its basic 

properties. Section 3.3 discusses two modifications to the GCR algorithm called 

truncated and restarted methods. In the last section of this chapter, we review 

some of the convergence results for the GCR methods. 

3.1. Generalized Conjugate Residual Methods 

Consider the system of linear equations 

Ax= b, (3.1.1) 

wherr x and /, nn• n dimrnsional vectors nnd A hi an n X n real matrix. If the 

matrix A is large and sparse then this system is often solved by iterative 

proc-r,lurrs. ln t.his rhnpt.rr wr present. several methods proposed by Eisenstllt, 

Elman, and Schultz (1083), which are in the clllSs of Krylov space methods. 

By a Krylov sp1tce we mean the vector space defined by 

16 
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rc(v,A,k) = spnn{11,A11, · · · ,A 1- 111}. 

A Krylov sp1tce method iii lln iterative method thnt 1tpproxim1ttes thr solution to 

equation (3.1.1) by generating iterates of the form 

xk E x0 + ic(r 0,A ,k), 

where x0 is an initial point, and r 0 is its corresponding residual. 

There are many examples of Krylov space methods in the literature (for a 

survey see Saad (rn85)). We concentrate on a particular class of methods, 

namely the Generalized Conjugate Residual (GCR) methods. In the following 

discussion, we now assume that the symmetric part of A is positive definite. 

Eisenstat, Elman, and Schultz (1083) suggest the following class of descent 

algorithms for the solution of equation (3.1.l ). 

ALGORITHM 3.1. Generalized Conjugate Residual Method 

Choose x 0 

Compute r 0 = b-Ax0 

Set Po= r 0 

For i=0,1, · 

a,-= 
(r,-_Ap;) 

(Ap- Ap) I, I 

Xj+J = X; + a,-p,­
ri+l = r,- - a,-Ap,-

Compute Pi+t 

The particular choice of a,- is one that minimizes II r,-+ 1 11 2 as a function of a so 
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that II r, 11 2 decreases at each iteration. 

There arc dillerent versions or this algorithm; these vary in how the new 

din:ctio11, p,, i, b rn111putcd. Ir we impose the rondilion that 

(,-lp,,Ap,) = 0 for i /- j, (3.1.2) 

then at each iteration x;+a minimizes the residual over the alline space 

x0 + <p0 , · · ,P, >. Auy set of vectors which satisfy condition (3.1.2) are said 

to be AT A -co111ugate. Condition (3.1.2) leads to the following formulas: 

- . !, {•) P1-11-r,+1+ Eb, Pj, 
j=O 

_ (Ar,-1 1,Api) 

b}'l = (APj,APi) 

(3.1.3) 

j = 0,1, · · · ,i. 

The algorithm re4uires storage for the solution vector ;c, the residual r, the 

vector Ar, and 2( i+ l) additional vectors for p and Ap, where i is the iteration 

number. The vectors Ar,+ 1 and Ap,+ 1 can share storage thereby reducing the 

total storage to 2( i+ l) + 2 vectors of length n. The work requirements are 

I 3(i+l) + 4 jn multiplications plus matrix vector multiplication per 

iteration. It is thus apparent that as I increases the method re4uires a large 

amount or storage and computations. 

111 

3.2. Restarted and Truncated Methods 

.N3 noted in Section 3.1, the GCll method becomes expensive as the 

iteration proceeds. AL each iteration we must orthogonalize the new direction 

agaim;t every previous directiou. To overcome this dilliculty, we could 

orthogonalize the new direction against some small number of previous 

directions. This can be accomJJlished usiug a variety or dilierent methods. 

One alternative is to orthogonalize the current direction against the la.st k 

directions. We refer to any such method as a truncated mdliod. 

The formulas for the direction vectors are given by: 

i 
P,+1 = r;+1 + E bJilPj, i = 0,1, · · 

j=i-i+I 

_ (Ar,-11,Ap,) 
bl•) - A ) 

J - (APj, Pj 
j = i-k+l, ... , •. 

(3.2. l) 

Another method for saving storage and computing time is to restart ·the 

algorithm every k+l iterations, using the current estimate for the solution as 

the new starting guess. Any such method is referred to as a H6tarted metliod. 

Both of these approaches are discussed by Eisenstat, Elman, aud Schultz 

(1083). Their version of the truncated method is also known as Orthomin(k) 

(see Vinsome (lll76)). The restarted method is known as GCH(k). The special 

case for k=0 is kuowu as the Minimuiu l{esidual (l\lH) method. Work and 

storage requirements for these methods are presented in Table 3.1. 
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TnhlC' 1. Work nnd Stornge Requir<'rnents ror CCR methods. 

GCR Orthom in(k) GCR(k) MR 

Work/Iter (3(i+l)+4)n (3k+1)n ((3/2)k+4)n 4n 
+ l Mv + 1 Mv + l Mv + l Mv 

Storag:e (20+2) + 2)n (2k+3)n (2k+3)n 3n 

Mv = Matrix-vector multiply. 

3.3. Convergence Results 

The basic properties or the GCR method are given by Eisenstat, Elman, 

and Schultz (1983). Since the direction vectors are chosen to be 

AT A-conjugate, a direct argument shows that X;+ 1 minimizes II r;+l 11 2 over 

Krylov spaces or increasing dimension. Eventually xi+l minimizes the norm of 

the residual over the whole space. This can be summarized by the following 

theorem proved by Eisenstat, Elman, and Schultz (1983, Corollary 3.2). 

THEOREM 3.1. Let A be an n X n real matrix such that 

M = (A +A Tl/2 is positive definite. Then the GCR method gives the exact 

solution to the system Ax = b in at most n iterations. 

Although Theorem 3.1 tells us that the GCR method converges in at most 

n iterations it does not provide information es to the rate of convergence of the 

method. The convl'rgcncc rate is given by the following theorem also proved by 

Eisenstat, Elman, and Schultz (1983, Theorem 3.3). 

THEOREM 3.2. Ir A ls an n X n real matrix such that 

,\f = (A +A Tl /2 is positive definite. and if { r;} is the sequence or re;iduals 

generated by GCR, then 

l!r;l\2 ~ min l\q,(A)ll2·llrol12, 
9. E P, 

where P; is the class or i-th degree polynomials. Moreover, if A has a com­

plete set or eigenvectors, and ir J = r-1 AT is the Jordan canonical form or 

A, then 

llr;ll 2 ~ ic(T) min max jq;(>.)l·llroll2-
,. E P, >. E >.(A) 
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Theorem 3.2 states that the GCR method is optimal among all 

polynomial-based iterative methods. Without any inrormation about the 

structure or the eigenvalues, we cannot pick the best polynomial a priori. 

However, it can be shown that all or the GCR methods converge using simple 

properties derived from the iteration process. This convergence proor was 

provided by Eis<'nstat, Elman, and Schultz (Hl83, Theorem 4.4). 



THEOllEM 3.3. If A i::i au arbitrary real matrix ::iuch that 

M = (A +A 1')/'2 is positive definite, and R = (A 1' -A }/2. and if {r;} is the 

:1C<p1cucc of rcsiduab gcucrntcd by GCH, Orthomin(k}, GCH(k), or MH thcu 

II r, 112 < 
1 _ m111(M) 

[ 

>,2 li/2 
>-max(AI'A) llrol'2, 

and 

II r, II 2 < 
I >-111111(M) 

[ 

2 l i/2 

- >-mm(A/ }>-max(M} + p2(Jl) II r O I I 2· 
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Elman (Hl82 p. 141} points out that these bounds are probably not sharp, 

and his numerical experiments seem to indicate this. We note that if A is 

symmetric and positive definite so that R = 0, then the second bound 

resembles the steepest descent bound (see Luenberger (11J73)). This is not too 

surprising, since the proof for these error bounds is the same for both the GCR 

method and the t-.,m. method. U we don't save any previous directions, that is 

k=O, then all the methods reduce to the MR algorithm which resembles the 

steepest descent algorithm. 

We also note that Theorem 3.3 docs not tell us how to choose k. Current 

folklore is that a value of k=l or k-":.! provide~ a good tradculf bctwt·cn the 

work au<l storage rc<1uircme11L~ 1rn<l au improved rntc of convergence. Jlowevcr, 

this type of analysis b inadequate for determining the effect of the number of 

23 

saved directions on the rate of convergence. We show in Chapter 4 how to 

derive a sharper error bound which cau bt• used, iu some cases, tu determine the 

optimal number of directions to save. 

For the special case of a symmetric operator, the algorithms take on a 

particularly simple form. An argument parallel to the one used by Eisenstat, 

Elman, and Schultz (1083 Theorem 4.5) shows the following. 

THEOREM 3.4. Let A be an II XII symmetric positive definite matrix. 

Then Orthomin(l} generates the same iterates as the GCll method. 

In essence, Theorem 3.4 states that when the GCll method is applied to a 

symmetric positive definite matrix the algorithm reduces to the well-known 

Conjugate Residual Method. This will become important in Chapter 4 when we 

study the effects of small perturbations to a symmetric operator on the 

convergence behavior of the GCH algorithm. 



CHAPTER 4 

The Nonsymmctric Problem 

This chapter discusses the solution of large, sparse nonsymmetric linear systems. 

Krylov met.hods, introduced in Chapter 3, are discussed in relation to the 

nonsymmetric problem. First, we review some previous work for nonsymmetric 

problems. In Section 4.2, we present the standard Chebyshev convergence 

analysis for the Conjugate Residual method. The main result is presented in 

Section 4.3. We show that the GCR(k} method converges with a bound which 

deviates from the error bound for the symmetric case by a term which depends 

on the size of the nonsymmetry, provided that the method is restarted 

sufficiently often. Section 4.4 treats two applications of our main result for 

special distributions of eigenvalues. 

4.1. Previous Work 

The Conjugate Gradient method is a popular method for the solution of 

syrnmPtric positive <lefinitc linear systems. However, many important problems 

give rise to nonsymmctric linear systems, which arc usually large and sparse. 

TherPfore, it seems natural to generalize the methods used for the symmetric 

case to the nonsymmetric case. There ar<' various ways to extend the Conjugate 
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Gradient method to nonsymmctric systems. Most of these modifications are 

generalizations of the Conjugate Gradient (CG} method introduced by Hestenes 

and Stiefel (1052), or the Conju~ntc Rrsidunl (CR} mrthod developed hy Stirfrl 

(1955 ). These methods impose conditions on the iteration method which force 

certain properties of the Conjugate Gradient method to be satisfied. 

Historically, the first suggestion for using the Conjugate Gradient method 

for general linear systems is due to llestenes and Stiefel (1952). They suggested 

using the CG method on the normal equations. Ir the matrix A has full rank, 

then the normal equations will be symmetric and positive definite. Fortunately, 

it is not necessary to form the product AT A since this could lead to a 

significant loss of precision. Moreover, use of the normal equations has the 

disadvantage that the convergence rate for conjugate gradients depends on 

,-(A TA) instead of ,-(A). If the problem is already moderately ill-conditioned 

then the resulting iteration scheme could converge slowly. 

The Generalized Conj11~atc Gradient (GCG) mrthod drveloprd hy Concus 

and Golub (1976}, and by Widlund (Hl78} was an attempt to modify the CG 

method to nonsymmetric systems. The GCG method uses a three term 

recurrence formula for the solution update where certain scalars are chosen to 

make the residuals of the iteration mutually orthogonal. Consider th!' iteration 

Xi+!= Xj-J + W;+1(r; + X; - X;_1), j = 0,1, • · · . (4.1.1) 

If we force the residuals of this iteration to be mut11ally orthogonal, then we can 

solve for the scalars w;. The formulas are given by 
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"'1 

w,+I = (1 + 
(,,,I,,, 

w, 
0.)-1, 

I= 1,2,. ·., 
(·1.1.2) 

where,,, (r.,r, ). 

Axelsson ( 1Q71l) developed a generalization of the conjugate residual method 

that differs in the formulas for tl1e solution update. Axell!Son computes the 

stcpleuglh!>, a, ,by !>ulving the lea:;l squares problem: 

min II n!•laUl - r, II 2, {4.1.3) 

where 

nlil = [Ap 0, · · · ,Ap;). 

The solution to the lea:;t squares problem (-1.1.3) is equivalent to minimizing the 

residual at each iteration. 

Young and Jea (1080) proposed a modification, Orthodir, Lo the CH 

method. The formula for the direction vectors is replaced with a more 

expensive calculation to try to improve convergence. In particular, they choose 

I . 

Pi+l = AP,+1 + E b}'lp,, 
j=O 

_ (A 2p,_Api) 
b}'l = (Ap,_APj) 

(4.1.4) 

Uoth Axebsou 's method and Orthodir, together with another method 

proposed l,y Saad (11183) called GMH.ES, are mathematically equivalent Lo CCR. 
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They all share the property that at each iteration the residual is minimized over 

a certain Krylov subs1mce. 

Saad (1081} used the relationship between the coujugate gradient method 

and La11c:1:<.l8 (1050) method Lo develop a clii.s:; of oblique projection methods. 

Arnoldi's (1051) method, which is a generalization of the Lanczos method for 

uousymmctric systems, is the ba:;i:; for these projection methods. 

Other authors have produced methods not based 011 the CG method for 

lurge 11u11sy111metric systems. Manteuffel (1077) developed a norn,ymmctric 

version of the Chebyshev method with an adaptive procedure for estimating 

eigenvalues. The main disadvantage of this method is the need for good 

estimates of the eigenvalues of the linear operator. These estimates are usually 

difficult to obtain even for the simplest problems. 

Gay (1070) analyzed Broyden's (1065) method for linear systems. Although 

Broyden's method was originally developed for nonlinear systems, Gay ::ihowed 

that for a nonsingular linear system, Broyden's method converges in at most 2n 

iterations for a system of order u, and proved that there exist systems for which 

2n iterations are required. 

We concentrate on the CCR methods developed by Elman (1082), who 

showed that several versioui, of the GCH method converge under the assumption 

that the symmetric part of the matrix A is positive dclinite. There arc two 

distinguishing features in our application. The first is that we do not have 

acce:ss Lo the cocllicients of the matrix A, and so we cannot form A T (sec 
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Section 1.2). Unfortunately, in our application we require the vector AT x in all 

of the above algorithms. The second feature is that the size of the 

nonsymmctrirs is small. Elman's analysis prt>dicts a rate of convergence which 

is too pessimistic in many cases. One would hope that the convergence behavior 

for our type of problem is similar to the standard CR methods applied to the 

symmetric problem. We show that for small perturbations to a symmetric 

operator that the error bound for GCR is not too difTerent from that given by 

the error bound for CR on the symmetric system. Unfortunately this bound 

deteriorates as the number of iterations increases so that we may have to restart 

the algorithm to obtain an acceptable convergence rate. First we review the 

standard convergence analysis for the symmetric prc.blem. 

4.2. Convergence Analysis for the Symmetric Problem 

The standard Chebyshev analysis for Conjugate Gradient methods is well 

known ( see for example Chandra (1078), Cline (1Q76), Axelsson (1084) ) and 

yi<-lds optimal error hounds for the algorithm. The analysis ror both the CG 

and CH met.hods is the same, but since we are mainly interested in the GCR 

methods we only present the error bounds for the Conjugate Residual method. 

Consider the system or linear eq11ations 

Ax= b, (4.2.1) 

wh<'r<' the matrix A is symmetric and positive definite. Let Pf denote the class 

of polynomials Pk of degree k such that Pk(O) = 1. The following result is due 

to Chandra (1974, Theorem 3.5). 

THEOREM 4.1. Let A be a symmetric positive definite matrix. Then 

for any k ~ O, the iterates of the Conjugate Residual method satisfy 

llr1ll2S min, max IP1(>-)l llroll2-
,, E P, ). E >.(A) 

211 

Theorem 4.1 states that the conjugate residual method generates the 

optimal polynomial with respect to the 12 norm of the residual. The particular 

error bounds for CH found in the literature are all derived by considering 

specific polynomials. For the general case, Engeli, Ginsburg, Rutishauser, and 

Stiefel (1050) suggest as a candidate polynomial, Pt, the one that minimizes the 

maximum value in an interval containing the spectrum, >.(A). The solution 

using this criterion is given by the normalized Chebyshev polynomial 

P1(>.) 
[ 

2>.-(>.1 +>.,.)) 
T1 >-1 - >.. 

7' I >-1 + >..,. J 
k >-. - >-1 

(4.2.2) 

where Tk(z) = cos( karccos z ), -1 $ z $ 1. Using the polynomial, p1 (>.), 

the following well-known hound can he derived. Although thr proof can ht> 

found In several places (see for cxiunple Clim· (1076)) we include it for 

completeness. 
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TllEOHEM 4.2. Let A uc u. sy111111etric positive ddi11ite matrix. Then 

for u.uy k 2: 0, the iterates of the Conjugate Hesidual method satisfy the er­

ror bound 

• l ,JK,-11 II rt II 2 ~ 2 ,J;, + l II roll 2, (4.2.3) 

where ,c = K(A) >-1/>-n. 

Proof. Consider the normalized Cheliyshev polynomial defined by {4.2.2). 

Clearly Pt(>..) E P;, so that an u.ppplication of Theorem 4.1 yields 

II < rnax II'• 2 - J..E).(A) 

Ir• l 2).. ~~)..-• :n >..n) l I 
l >..,+>... ) 

Tt >..n->-.1 

II ro II 2· (4.2.4) 

Using a proi,erty of Chebyshev polynomials that I T1(z) I ~ 1, -1 S z S 1, 

2'>.-{>..,+'>-n) 
and noting that I , , I S l (4.2.4) reduces to 

, II ro 1'2-
11 r1 II 2 S ...--lA :--1-;-+'>.'• } 

r. '>-.-'>-, 
( 4.2.5) 

l >..,+>... ) To bound the term, Tt --- , consider the k-th degree Chcbyshev 
'>-.-'>-, 

i,ulyuumiu.l, 

1'• (z) co,,(/; .. rccos z ). {4.2.ll) 
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From the cldi11ition 

cos{o) = ½(ei" + e-io), 

and the relation 

e i u = ( cos 11 + i sin /J)t, 

equation (4.2.6) can be rewritten as 

Tt(z) = ½ [(z + .fY::-j)
1 

+ (z - J;C""i/]. (4.2.7) 

For the value z = (>.. 1 + ).. 0 ) / (>... - >..i) = (1 + it)/ (1 - it), (4.2.7) becomes 

T [ >.., + '>-.) = .!..[( ,J;,- l )t + l J;. + l 1*], 
t '>-n - >.. 1 2 ./K. + l VK. - 1 

{ 4.2.8) 

where it is the condition number of the matrix A. Combining (4.2.8) and (4.2.5) 

results in 

, VK-1 VK+] 

[ 
r k r •)-' 

II rt 112 ~ 2 ( .;;_ + 1 I + ( ./K. _ 1 I II r o II 2· (4.2.Q) 

Notice that, 11:(A) ~ 1, so that 

O< ~-1 <l< J;.+1 
- J;.+1 ./K.-1' 

and hence 

[l J;.- 1 )t + l J;. + I 1*)-1 < l J;. - l )t . 
./K.+1 ~-1 - J:+1 

{4.2.10) 

The proof is completed by substituting {4.2.10) into {4.2.ll). D 
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The error hound (4.2.3) depends on two facts, both or which arc properties 

of symmetric matrices: (i) the eigenvalues of the matrix A are known to be real, 

(ii) the matrix A is guaranteed to have a complete set of orthogonal eigenvectors 

and hence is unitarily diagonalizable. Neither one of these two properties is true 

in general for a nonsymmetric matrix and makes the analysis of Krylov space 

methods for nonsymmetric matrices more difficult. 

In practice, the error bound (4.2.3) can be quite pessimistic for certain 

probiems. Whereas this is the best error bound for the general case, the bound 

can be improved for special distributions of the eigenvalues of A. Axelsson 

{1084) derived an improved error bound by assuming that the eigenvalues were 

distributed over two well separated intervals of equal length on the positive real 

axis. Jennings (1077) and Stewart (1075) also obtained results for special 

distributions of eigenvalues. Jennings considered the effect of one isolated 

eigenvalue on the convergence rate. Stewart also considered the case of one 

isolated eigenvalue. However, he concentrated on the convergence rate of the 

eigenvector 11.-ssociatcd with the isolated eigenvalue. 

4,3. Perturbational Analysis 

The standard convergence rate analysis for Conjugate Gradient methods is 

h:i.~rcl on thr 11.~~11mption that the systrm is symmetric ancl positive definite. We 

consider the system 
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A(c)x = b, (4.3.1) 

where 

A (c) = A + cE, c > O, 

A is an n X n symmetric positive definite matrix, and E is a general 

nonsymmetric matrix such that II E 11 2 = 1. 

Elman (1Q82) has shown that the GCR method generates iterates whose 

residuals are bounded by 

lh 112 :S max llqt(A(c))ll·llroll2 (4.3.2) 

for all polynomials qk of degree k such that qk (0) = 1. However without 

additional information on the structure of the eigenvalues of the matrix A we 

cannot deduce a general result from this bound. We point out that there exist 

matrices for which the GCR method converges in no less than n iterations, that 

is, the residual will not decrease substantially until the last iteration. This point 

!Ilay be clarified by an example. Consider the matrix J defined by 

>. er O 0 

0 >. er 0 

J=IO o >. 

0 0 0 

Cl' 

>. 

In this c11se II qt (J) II is on thP ordrr of 1. In fact, the minimum polynomi11l for 

J is the characteristic polynomial (see Wilkinson (1065) p.41-42). Therefore the 

GCR method will not produce any substantial deerea.~e until k=n. 
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In many important examples the perturbed matrix is only slightly 

11u1c,y111111ctric. For :;uch system:; we would like to cou:;ider the effect of small 

perturbations on the convergence rate of the GCH method. We show that the 

couvcrg1:11r.c rnlc b si111il11r to the 11La11<l1Lrd convergence rate for the Cll method, 

al lea.st for the lirsl few ileratiou:;. 

\Ve tir:;l 1,rove a lc111111a which give:; us a hound 011 the perturhation of a 

matrix polynomial. 

LEMMA 4.3. Let 4>t (D) ,be a matrix polynomial of degree k, where Dis 

a diagonal matrix, and let E be a general nonsymmetric matrix such that 

II£ II = 1 for some consistent matrix norm. Then 

t . 
II 4>dD+tE) - 4>1(D)II :S f ~ J" I Ct, I ·(II D II +t )'-1, 

j=I 

where c11 are the coclficients of the polynomial ¢1 . 

Proof. Hy the fuudamental theorem of calculus 

4>i(D+tE)- 4>t(D) = j db d¢1(D+6E) 
0 df, 

(4.3.3) 

Taking norms on both sides of (4.3.3) and using Holder's inequality we obtain 

d¢1 (DHE) ' 
ll4>1(D+tE)-¢1(D)II S

0
tlPs,II db 11·11 {db II- (4.3.4) 

To bound the right-haud side of (4.3.4) corn,ider the derivative term 

d4>1 (D+6E) 
df, 

iince <Pt is a polynomial of degree k we can write 

t ti(D+M:)i d4>.(D+bE) - _!!._ t, C (D+bE)' = E Ct} df, 
--d:,,f,' - df, j=O t; ;~o 

Jsing Liebniz's rule, (4.3.5) cau be rewritten as 

d4>.(DHE) _ ,~ . ,i, (D+6E)'-1E(D+6.t.:)'-i. 
~-- - L.J CtJ L.J 

j=O i=l 

l'aking norms in (4.3.6) and using the triangle inequality yields 

d4> (DHE) • · 
II t .JI II S II ~Ct;t(DHE)i-lE(D+6£)i-ill 

j=O i=l 

t . 
< Ei·lc1,l·IIEll·IID+6Ell'-1 

i=I 

:lubstitutiug (4.3.7) into (4.3.4) results in the inequality 
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(·1.3.5) 

(-1.3.6) 

(4.3.7) 

. . 

ll4>.(D+tE)-¢1(D)II S sup I Ei·lc1,l·IIEll·IID+6Ell'-1 ]t. (4.3.8) 
0 $ 6 $ t j=I 

Notice that 

sup IID+6E II S sup (IID II+ 161 IIE II) 
0~6$< 0$6$< 

:::;IIDll+tllEII, 

which we may :iuli:ititutc i11Lo im·1piality (-1.:Uj) Lo olitaiu 
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k . 
II ¢i(D+cE) - ¢i(D) II ~ £ II E II E i· I ck; I ( II D II+£ II E II )1 -

1
. (4.3.9) 

j=I 

The proof is completed by using the 11ssumption II E II = 1. D 

The main result of this study is a bound for the GCR method which applies 

to the perturbed problem described in equation (4.3.1). We show that when the 

GCR method is applied to a symmetric operator which has been perturbed, then 

for the first few iterations the GCR method generates iterates whose residuals 

satisfy an error bound that is close to the well-known error bound for the 

symmetric case. 

THEOREM 4.4. Let A(£) = A + £E, where A is an n X n symmetric 

positive definite matrix, and Eis an arbitrary matrix such that II E 11 2 = 1. 

Then the GCR method applied to the perturbed system 

A(l)x = b 

yields a sequence of residuals that satisfy the inequality 

where 

II rt II I J;" _ 1 ) k 
lT-;:Jf ~ 2 VK + 1 + Tt' 

Tt = 2K6 k . . [ K.~6) _ } ] j-1 
(JK' + l)HI _~J lc1;I __._..,.;....L..__:;_ (JK'- I)l-j 

J=l It+ 1 ' 

6 = 2t/A1, a11<l ckf tire the coefficients of the k-th degree Chrhy1<hrv 

polynomial. 
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Proof. Since the matrix A is symmetric, it is unitnrily dingonaliznblc, !!O let 

A =D be diagonal. From (4.3.2) 

!1 
't !!~ ~ II q1(D)ll2 + II q1(D+£E)- q1(D)ll2- (4.3.10) 

The first term on the right hand side of (4.3.10) is exactly the standard 

convergence rate bound from the symmetric problem. The second term depends 

on the perturbation and the polynomial chosen. To bound this term we choose 

a particular polynomial and apply Lemma 4.3. 

By analogy to the symmetric case consider the matrix polynomial 

Define 

Then 

T ( 2(D+cE)- (A1 + >-n)I) 
l >-1 - >-n 

q1(D+£E) = [ A
1 

+An) 

T1 An - >-1 

• 2D-(A 1+>.n)I 
D = >-1->-n ' 

• 2< (=--. 
>-1-An 

qt(D+<E) = Tt(D + cE) 

Tk I >-1+An } 
An -Ai 

To bound the !!rcond term of (4.3.10) u~c Lrmma 4.3 to yirld 

(4.3.11) 

(4.3.12) 
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II 9t(D+tE)- 9t(D)II < 
II Tt(i> + iE)-r.(i>)II 

" l >-1+>-. ) 
1 t >...->-1 

l . . 
t E J' I CtJ I ·(Ill) II + ijJ-l 

< ,_,, 1~11 
r. ' ->..1 "n 

Uy (4.3.12), IID 11 = 1, so that 

2( t 

II 9t(l>+lE) - 9t(D)ll2 S >-1-=>:" i'ft I ctj l(l+~r• 

H ~~~~: 11 . 
(4.3.13) 

The term in the denominator is bounded ( see Cline (1976)) by 

I Ttl~) 1-1 s 2{ ,;;,_ 11•, 
>...->... ,;;, + 1 

(4.3.14) 

Substitute (-t.3.1'1) into (4.3.13) aud let. b = 2t/>..1. Then (-t.3.13) becomes 

ll9t(D+tE)-9.(D)ll2s2[ 1-l 1· Ati·lctjl(1+ "
6
1)·}-I (4.3.15) 

K. + 1 K.-lj=I K.-

where the quantity b may be thought of as a normalized error. 

Define 'It by 

K6 l [ j-1 
,,. = -~i·lc ·I 1+~) K.-1 . kJ ' J=I K.-1 

(4.3.16) 

which is a measure of the perturbation in the Chebyshev matrix poly110111ial due 

to the normalized error 6. Then the right hand side of {4.3.15) may be 

3g 

simplified to 

, l t [ )J-1 2( Vii: -- I ) 'It = 2Kh }::; i· I Ct I K(l+h) - 1 (,I;,_ J)k-i 
,f;, + l ( ,f;. + 1 )k + 1 j = 1 J ,f;. + 1 

(4.3.17) 

= Tt, 

so that ( 4.3.15) becomes 

ll9t(D+tE)- 94(D)ll2 S Tt, {4.3.18) 

The proof is completed by substituting (4.3.18) into (4.3.10). 0 

Remark 1. The values of the coefficients Ct; of the Chebyshev polynomials are 

easily computed (see for example Lanczos (11161) p. •155). The cocllicients for the 

lirst 10 Chebyshev polynomials are provided in Table 4.1. 

Remark 2. If rt is a slowly growing function of k then for the first few iterations 

we should get a convergence rate similar to I.he one for the Cll method on the 

unperturbed symmetric problem. A few of the values of r4 for various values of 

6 and 1,,(A) are given in Tables 4.2-4.4. Here we have used the formula 

VK-1 VK+l 

[ 

r: l r: l ]-1 
Tt = 2 [ VK, + l ) + [ ,f;, _ l ) 'It• (4.3.111) 

instead of the expression (4.3.17). For k S 10 (4.3.IQ) provides a tighter bound 

than the 11.':iympt.otic formula used iu {4.3.17). 
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Table 4.1. Chebyshev Coefficients 

Coeffirirnts for T.(x) 

i 
o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 
1 
0 

-1 
0 
1 
0 

-1 
0 
1 
0 

-1 

1 
0 2 

-3 0 4 
0 -8 0 & 
5 0 -20 0 16 
0 18 0 -48 0 32 

-7 0 56 0 -112 0 64 
0 -32 0 160 0 -256 0 128 
g 0 -120 0 432 0 -576 0 
0 50 0 -400 0 1120 0 -1280 

Table 4.2. Values or Ti for Different Condition Numbers 
Normalized Error = 10-6 

Tt 

k Condition Number 
10 100 1000 10000 

1 1.1110-6 1.01 10-6 1.00 10-5 1.00 10-5 

2 4.44 10-5 4.04 10--6 4.00 10--6 4.00 10-5 

3 1.67 10-5 1.52 10-5 1.50 10-5 1.50 10-5 

4 5.33 10-5 4.85 10-5 4.80 10-5 4.80 10-5 

5 1.01 10-4 1.40 10-4 1.45 10-4 1.45 10-4 

6 4.67 10-4 1.21 10-4 4.20 10-4 4.20 10-4 
7 1.31 10--3 1.10 10--3 1.18 10--3 1.18 10--3 
8 3.63 10--3 3.33 10--3 3.27 10--3 3.26 10--3 
II g,85 10--3 8.05 10-3 8.87 10..;J 8.87 10..;J 

IO 2.04 10-2 2.40 10-2 2.38 10-2 2.38 10-2 
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I g I 10 

256 
0 512 

TRhle 4.3. VRlucs or T1 for DilT<'r<'nl, Condition N11mhcr.1 
Normalized Error= 10--3 

Tt 

k Condition Numhcr 
IO 100 1000 10000 

1 1.11 10-3 1.01 10-3 1.00 10..;J 1.00 10..;J 

2 4.15 10--3 4.04 10..;J 4.01 10-3 4.00 10..;J 

3 1.67 10-2 1.52 10-2 1.50 10-2 1.50 10-2 

4 5.35 10-2 4.80 10- 2 4.82 10-2 4.81 10-2 

5 1.62 10- 1 1.47 10-1 1.46 10-1 1.45 10-1 

6 4.60 10-1 4.20 10-1 4.22 10-1 4.22 10- 1 

7 1.32 10° 1.20 10° 1.1g 100 1.10 10° 
8 3.65 10° 3.31 10° 3.28 10° 3.28 10° 
0 0.01 10° 0.01 10° 8.03 10° 8.g2 10° 

10 2.66 101 2.42 101 2.40 101 2.30 101 

Table 4.4. Values of Ti for Different Condition Numbers 
Normalized Error= 10-1 

Tt 

k Condition Number 
10 100 1000 10000 

1 1.11 10- 1 1.01 10-1 1.00 10-1 1.00 10-1 

2 4.04 10-1 4.45 10-1 4.10 10-1 4.40 10- 1 

3 1.08 10° 1.77 10° 1.75 10° 1.75 10° 
4 0.85 10° 6.0!J 10° 6.03 10° 6.02 10° 

5 2.23 101 l.lJ7 101 1.IJ5 101 1.05 101 

6 6.ns 101 6.)3 101 6.05 101 6.01 101 

7 2.12 102 1.85 102 1.83 102 1.82 102 

8 0.32 102 5.47 102 5.40 102 5.30 102 

0 1.85 103 I.Sil 103 1..57 I a3 1.57 Ja3 
10 5.37 103 4.58 103 4.52 1a3 4.51 1a3 
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An inleresling poinl cvidcnl from Tables 4.2-4.4 is that Tt approaches a 

limit a.s r.:(A) -+ oo. thing equation (,1.:uu) and ta.king the limit as ic(,l) -+ oo 

yield~ 

4 

lim T. = 6 }-: j· I c•; I (1 + 6)'-1
. 

It-OJ j=...;;1 

Unfortunately, the c,~c where the condition number of A is large is not of 

interest in our application (nor in any practical problem since the CH method 

would proliably converge Loo :slowly). 

An immediate cousequence of Theorem 4.4 is the special case of a small 

perturbation Lo the identity matrix. 

COROLLARY 4,5. The GCR method applied Lo the perturbed system 

(I + (E)x = b, II E II = 1, 

yielili; 11. sequence of residuals that satbfy the inequalities 

11 rt II < t(t. 
~-

Proof. An application of Theorem 4.4 shows that 

II r4 II < r•. 
1M- (-1.:um) 

Nolt' tlu,t ic(/) = I, so that (·1.:1.:.!ll) hi rcduci,s to 
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II r1 II < 26 t [ o ) •-• NI - 2•+1 !cu I 2 (·1.3.:.!l) 

The coelficieut cu in (4.3.21), which is the leading term of the k-Lh Chcliyshcv 

puly110111lnl '/'4(x), i!j 

Cu = 2A-I (4.3.:.!:.!) 

Substituting (4.3.:.!2) into (4.3.21) and using the definition of b = :.!t/>. 1 

complt:Lcs the proof. 0 

As we already argued in Chapter 3, the GCB. method is really not a 

practical algorithm for the types of problems we are interested in. Setting aside 

the issue of storage for the moment, the CCR method is not a practical 

algorithm because of the large amount of computation needed as the iteration 

proceeds. Most of this work is in computing the inner products necessary to 

compute the scalars bJil, which are used in the calculation of the new direction. 

In some applications, for example in elliptic partial differential equations, the 

matrix-vector multiply is not too expensive compared to an inner product, so 

that as the iteration proceeds it becomes expensive to calculate 11. new direction. 

In our application a matrix-vector multiply is defined by the solution of a 

boundary value problem, so that the inner products are cheap compared to the 

matrix-vector multiply. Therefore the question of practicality will depend on 

the ::;pccilic apvlication. For U11: most part, we have abo 11. limikd 1u11ount ~f 

i;torttKc so that we arc forced to use 011e of the truncated or restarted methods. 
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The restarted version of the GCll method, GCR(k), ls particularly easy to 

analyze with the aid of Theorem 4.4. 

Recall that the GCR(k) method is the GCR method restarted every 

k+ 1 iterations. By a cycle we mean any set of residuals generated between 

any two restarts. For example the j-th cycle is 

{ r;(l),r;(2), · · · ,r;(t+1)}-

Denote the sequence of residuals generated by the GCR(k) method by 

{rO(o),r(Xl)• ... ,r(Xt+1),r1(1)• ... ,rj(I)• ... }. 

Notice that 

Let 

r;(o) = r;-1(t+1) j = 1,2, · · .. 

( vie - 1 } i + T;' 
B; = 2 vie+ 1 

(4.3.23) 

where r; hi the error term from Theorem 4.4, and 1t is the condition number of 

A. 

We are now in a position to prove an error bound for the GCR(k) method. 
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THEOREM 4.6. The GCR(k) method applied to the perturbed system 

(4.3.1) generates residuals that satisfy the inequalities 

llrj(l)II < B Bi l = 1, · · · ,k+l. 
II rO(o) II - 1 t+l' 

Proof. By Theorem 4.4 it follows that within any cycle 

II r;(I) II < B,. 
II r;(o)II -

Now consider the total reduction in the residual 

II r;(t) II 
11 rO(o) II 

llrj(l)II llr;(o)ll 

II r;(o) II · 11 rO(o) II · 

Using (4.3.23), equation (4.3.25) reduces to 

11 r;(1J II 

II rO(o) II 

II r;(I) II . II r;-1(k+1) II 
- llr;(o)II llrO(o)II 

Repeated application of this procedure yields 

II r;(I) II 
11 rO(oJ II 

II r;(I) II 
II r;(o) II 

II r;-1c1+1ill 

11 r;-1(0J II 

An application of Theorem 1.4 to each term 

II rO(H1)II 

II rO(o) II 

II rj(I) II _ n -n,· l=t ... k+1 
--- ' +1 ' ' II rO(o) II 

completes the proof. 

(4.3.24) 

(4.3.25) 

D 
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"·"· Speci,ll Distributions of Eigenvalues 

In this section we discuss two applicalion!l of Theorem 4.4 for matrices with 

special dislril111lio11s of eigenvalues. AB in the symmetric case, the error bounC:s 

derived for the GCI{ method depend 011 the particular polynomial chosen in 

Theorem 4.4. The lirst ca,;c we co11sidcr i:; a matrix with eigenvalue::; that lie in 

oue of two clusters. The :second ca:,e i:; that of a 11111trix with one i:solatcd large 

eigenvalue. In both of these cases the theory for the symmetric problem 

predicb au error bound which i:s superior to the error bound predicted for the 

general case (see Axcl~on (1IJ!H)). The idea in both ea:ses is to choose a 

polyuo111ial, Pt(>.), with Pt(O) = l, that takes into account the special :structure 

of the spectrum. Using thi:; polynomial, Lemma 4.3 is applied to derive a bound 

for the maximum of the matrix polynomial over the spectrum of A. This bound 

is then used iu place of the staudar<l error bound used for the general case in 

Theorem 4.4. 

Consider the case where the eigenvalues of the matrix A are separated into 

two distinct clusters of equal width. Let 

>.(A) E [>..,b] LJ [c,>..1], 

where b - >.. = >. 1 - c, and define the polynomial 

P2(>.) = I - w>.(>.1 + >.• - >..). (-1.4.1) 

If we lldd lhc additional coustrniul that l'Ac)-= -1'2(>.i), then we cau solve fur 

w so that 

i\(>..) = 1 -2 !>.. 1(c+>..)- c(c->..)t 1 >..(>. 1 + >... - >.). 

By aualogy to the symmetric case consider the polynomilll defined by 

1
2(1 - [.i 2(>.)) - (# + o)) 

T1 /3 - o P2(>-) = ___ __: ____ _ 

T11/J+o) 
o-# 

where a: = l - J\(>..n }, and /3 = 1 - I\( b ). Notice that P 2(0) = l. 

The Chebyshev polynomial T 1(z} = z, so that (4.4.3} reduces to 

2 -
Pi>.)= 1 -- --(1 - P 2(>..)). 

/3 + Q: 

Sub~titutiug (4.4.1) into (4.4.4) results in 

2w(>. + ).. ) •, 
P2(>.) = l - I • ).. + ~w , )..2_ 
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(·1.1.2) 

(4.4.3) 

. (4.4.4) 

(4.4.5) 

Applying Lemma 4.3 to the matrix polynomial P2(D+cE) , we obtain the 

inequality 

IIP2(D+£E)-P2(D)II ~ f[lc21I +2lc22l(IIDII +t)], (4.4.6} 

where Ct; are the coefficients of the polynomial P 2(>..). A straightforward 

calculation reduces inequality (4.4.6) to 

IIP2(D+cE)- P2(D)II ~ _b_[ (3 + b)K(A) + 1 l 
/3+ o l + (i_, _.!_)c - _1_c2 ' 

)., ).. ).,).. 

where b = 2£/>.1 . 

(4.4.7) 
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If we use the GCH( I) mrthod then nft.cr every 2 lternt.lons the method will 

generate a polynomial of degree 2. Therefore, applying Theorem 4.4 with the 

bound (4.1.7) yields 

J!..'.:!!L < 1 + _6 _ [ (3 + 6)11:(A) + 1 l 
llroll - , (/3+exJI f3+ex 1+(_.!_+...!....)c--1-c2 

· 
T1 -- )., ).. ).,).. 

ex - (3 

Using the definition of the Chebyshev polynomial ror k = 1 results in 

~ < ex - /3 + _6_ [ (3 + 6)11:(A) + 1 ]· 
II ro II - /3 + ex /3 + ex 1 + (_.!_ + ...!....)c - - 1-c 2 

)., ).. ).,).. 

(4.4.8) 

Remark. In the special case when b = >-n,c = ).. 1, then ex= (3 = 1, and (4.4.8) 

reduces to 

J!.'.:..:.!L < i[ (3 + 6)11:(A) + 1 ]. II ro II - 4 
(4.U) 

The second case of interest is the case of an isolated large eigenvalue. 

Consider the ca.,;e where 

A E [>-,.,bJ U [>-1I• 

The standard error bound Involves the condition number of A defined by >-.if>-.". 

If ).. 1 >> b, then this error bound may be a severe overestimate. Cline (Hl76) 

h11.q iahown thnt the elTcct of one isolated large eigenvalue is that of adding one 

iteration to n prohlcm with a condition number oC tc' (A)= b />-,.. We show 

that the perturbed problem behaves similarly. 

4g 

Consider the polynomlnl 

( 
2).. - ( b + ).." ) ) 

Tt-1 b _ ).." 

P,(>l-[ 1 
- ;, I [~I 

Tt-1 ).. -b 
" 

(1.1.10) 

We seek to bound the term Pt(D+iE), so as in the proof of Theorem 4.4 first 

write 

Pt(D+iE) = Pk(D) + [Pt(D+iE)- Pk(D)]. (4.4.11) 

The first term can be bounded by using the standard convergence analysis of 

Section 4.2. To obtain a bound for the second term of (4.4.11) substitute 

(4.4.10) and rearrange terms to yield 

Pk(D+iE) - Pk(D) 

= [ l _ ..!2_) I Tk_1(DHE)- Tt-1(D) I 
)..I f b +>-.,. ) 

Tt-1 ~ 
" 

iE Tt-1(D+£E) 

>-.1 [b+>-.,.) 
Tt-1 ~ 

" 

{4.4.12) 

where D and l are defined in Section 4.3. Taking norms on both sides of 

{4.4.12) and noting that 111 - ~ II ~ 1, we obtain from (4.4.12) 

II Pt(D+iE) - Pt(D) II 

< 
II Tt-1(b+rn)- Tt-1(D)II 6 II Tt-1(DHE)II 
---,.----,,--+--r----~ 

I ( b + )..,. l I 2 ( b + >-,. I 
Tt-1 ~ Tt-1 ~ 

(4.4.13) 
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llt:rc agaiu Jcliuc b = '2t/'>. 1, and let 

1i. 1 = II 1't-1(i>+ct:) - T1.1(i>) II-

Thcu 11,;iug the triaugle iucquality aud properties uf the Chebyshev pulynu111iab 

II 1't-l(l) t-iE)II :S II 1'4_1(D)II t ''4-1 

< 1 + 'It-I· 

Substitutiug (·1.4.14) iuto (4.4.13) yields the bound 

(4.4.1-l) 

IIP1(D+cE)- Pt(D)II ~ I · 1 [T/t-1 + ¾(1 + T/t-& 

l b+'>.. l (4.4.15) 
T._. >. -b 

II 

Takiug 11or111s 011 both sides of e<1uation (4.4.11) and using the triaugle 

inequality yields 

II Pt(l>+tE) II ~ I l I [ (1 + T/t-1l + _2b (1 + ,,._.) ], 

l b +'>.. ) (·1.4.16) 
Tt-1 ~ 

• 

which reduces to 

r, k-1 
, [ Vl'i.' - I l b 111\(D+tE)II ~ 2 ff+ 1 [(l + T/t-d + 2(1 + 'it-ill, (4..t.17) 

where l'i.
1 = b /'>. •• 

A5 in the symmetric case, the error bound depeuds on the effective 

cuuditiuu 11,1111bcr t. 1 
• We also uulc that the elft.ct of the isolated large 

eigenvalue b that uf looiug uue iteration, if tht! term 'It-I is 11ot too large. 

CHAPTER 6 

ApplicntiollH and N1111u,ricnl HeHultH 

Thi:; chapter prcscnb ::!<.)Ille 11111110:rirnl re:rnlls fur certain 11pplirntio11s of i11tt·re:-.l. 

The purpose of these numerical examples is to illustrate some of the important 

aspects of Theorem 4.4. 

6.1. Numerical Examples for Small Perturbations 

Theorem 4.1 states that for small non.symmetric perturbatious to symmetric 

operators the convergence rate for the GCR(k) method is similar to the 

convergence rate for the CR method applied to the symmetric system. We 

present several small numerical examples that illustrate this poiut. 

These experiments were run on a Pyramid computer, using double precision 

arithmetic. The method was said to converge whenever 

11 r1 II < 10-6 . 

~-

In these test cases, the noise level refers to the size of c i11 the equation 

A(t) = A + tli. ([>.1.1) 

Siuce the 111utrix A is symmetric positive dcliuitc Wt! a,;smned that it was already 
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diagonalized, so that A = diag(d 1,d 2, · · • ,dn)• The nonsymmetric 

perturbations were generated using the random number generator, URAND, 

from IMSL. The matrices, E, were computed by generating uniform random 

numbers between [-0.5, +0.5 ], and normalizing so that II E II 2 = 1. The noise 

level was adjusted by varying £. 

The first test case is an application of Corollary 4.5. The matrices In this 

test case are all of the form A = I + £E. Corollary 4.5 predicts the error 

bound 

11 rt II < k£1 . 
ttr'JI -

Tables 5.1-5.2 display the number of iterations required for the GCR(k) method 

to converge for two matrices of order 10 and 50. Both of these matrices are 

small perturbations of the identity matrix. 

Table 5.1 
Perturbation to Identity, N = 5. 

Number or Iterations 

k Noise Level 
10-6 10-3 10-t 

1 1 2 5 
2 1 2 5 

3 1 2 4 
4. 1 2 5 

5 1 2 4 

Table 5.2 
Perturbation to Identity, N = 50. 

Number of Iterations 

k Noi:::e Level 
10-6 to-3 10-• 

1 1 2 5 
2 1 2 5 
3 1 2 5 

4 1 2 5 
5 1 2 5 
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These results show that the convergence rate is predicted quite well by the 

theory. 

The second set of test cases was chosen to demonstrate the effect of clusters 

or eigenvalues on the convergence rate. For the symmetric case it is well known 

that the CR method will converge in at most m iterations, where m is the 

number of distinct eigenvalues. In fact, the clustering of eigenvalues tends to 

improve the convergence rate more than would be expected from the standard 

bound given in Section 3.3. The purpose of this set of tests is to determin<' if 

the nonsymmetries would destroy this clustering effect. A secondary goal is to 

determine if there is an optimal number of directions to save depending on the 

number of clustel'l'l, We ran several cnsrs, with a varlou,. numhrr or clm,t<'r<'I of 

eigenvalues. Tables 5.3-5.5 demonstrate the effect of the noise level on the two 

cluster cMe. Table 5.6 displays the predicted number of iterations using the 

theoretical bounds derived in Section 4.4. In the two cluster cRScs, the matrix A 
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wa,; formed ~ thaL it had two eigeuvalues each with multiplicity fl /'1., that is 

the 111 a trices are of the form 

d, = >-,, 

d; = .>.8, 

l < I < .!!_ 
- - 2' 

(.!!.+l) < j < 11. 
2 - -

Tables 5.7-5.8 vreseuL the results for the 3 cluster cases. In the three 

cluster case, the matrix A has 3 eigeuvalues each with multiplicity fl /3. These 

matrices arc of the form 

d; = >-1, 

d, = >-2, 

d; = .>.n, 

1 < i < .!!. 
- - 3' 

fl 2 (-+l) < i < 2-3 - - 3 t 

( 
211 
3+1) S i s fl. 

Table 5.3 
Two Clusters al An = .1,).. 1 = 1.0.; N = 50. 

Numher of Iterations 

k Noise Level 
10-6 10-3 10-• 

0 6 7 60 
I 3 6 22 
2 3 5 26 
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Taule 5.-1 
Two Clusters al >-n = .01,>- 1 = 1.0.; N = 50. 

Numhn <:>f_!_!:~,r~tions 

k - N,,ise (,1,vd 
10 (l Ill ;J Ill I 

() 4 JOU :!-IT 

I 3 8 37T 

2 3 8 55T 

t GCR stalled out (slepsize too small). 

Table 5.5 
Two Clusters at An = .001,).. 1 = 1.0.; N = 50. 

Number of Iterations 

k Noise Level 
10--0 10-3 10-• 

0 g g57l 35T 

I 4 16 21 T 

2 3 16 321 

t CCI{ stalled out (slepsize too small). 

Section 4.4 discussed the case where the eigenvalues were contained in two 

distinct clusters. For the special case where the matrix has only two eigenvalues 

the analysis predicts the error bound 

~ < !.( (3 + 6)11:(A) + 1 ), 
II roll - 4 

(5.J.'1.) 

where 6 = ~. Usiug thi::; crrur hound, the uumher of iterations re11uin·d to 
.>., 

reduce the norm of the residual by 10-b may be computed. If we denote by p the 
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minimum number of itcmtions to reduce the norm of the residual by 10-6, then 

p = 2. lo~ 10-6 

6 
log 4( (3 + 6)1t(A) + 1) 

These values are tabulated in Table 5.6. For certain combinations of the 

condition number and the normalized error the bound in equation (5.1.2) is 

greater than I, so that the predicted number oC iterations is meaningless; these 

values. are not displayed. Overall though the predicted number of iterations 

match very well against the actual number of iterations taken. 

Table 5.6 
Predicted Number of Iterations for the 2 Cluster Cases. 

Number of Iterations 

Condition Number Noise Level 
10-6 10--3 10-t 

10 4 7 ... 
100 4 15 ... 

' 
1000 5 ... . .. 

Table 5.7 
Three Clusters at a=0.l, b=0.5, c=l.0; N = Q. 

Number of Iterations 

k Noise Level 
lo-6 10--3 10-t 

1 11 11 20 
2 4 7 20 
3 4 7 20 
5 4 6 20 
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Table 5.8 
Three Clusters at a=0.l, b=0.5, c=l.0; N = 30. 

Number of ltt>ration~ 

k Noise Level 
10-6 10--3 10-t 

1 11 11 30 
2 4 7 25 
3 4 7 24 

5 4 7 23 

These numerical experiments demonstrate that the GCR(k) method applied 

to the perturbed problem behaves very much like CR applied to the symmetric 

problem. In addition these test cases point out that the convergence rate or the 

GCR(k) method does not improve by saving more directions than is necessary to 

build up a k-th degree polynomial, where k is the number of clusters. For_ 

example, the GCR(l) method builds a quadratic polynomial, so that for the two 

cluster case saving l direction is sufficient. 

In the third test case, the eigenvalues of the matrix A are uniformly 

distributed in the interval [>,.n ,>,. 1]. This purpose of this test case is to df:'tcrmine 

the effect of the number of saved directions on the convergence rate. Tables, 

5.Q-5.11 illustrate the effect on the convergence rate for various numbers of 

saved directions and condition numbers. 



Table 5.0 
Evenly Spaced Eigenvalues E [1.0,10.0]; N=lO. 

Number or Iterations 

k 
Nobe Level 

106 10-3 10-• 

I 30 30 30 

2 27 27 27 

3 2:1 23 2:1 

4 10 10 111 

5 21 21 21 

Number of iterations for CH on symmetric proLlem = 10. 

Table 5.10 
Evenly Spaced Eigenvalues E [1.0,10.0]; N=50. 

Nurnl,er or ltt-rations 

k 
Noise Level 

10-6 10-3 10-• 

I 31 31 31 

2 26 26 26 

3 2·1 2·1 2·1 
4 2:i 23 23 
5 22 22 22 

JO 21 21 21 

Number of iterations for CH on symmetric problem = 20. 
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Table 5.11 
Evenly Spaced Eigenvalues E [1.0,100.0]; N=50. 

Number or ltt·rations 

k 
Noise Level 

10 6 10 3 10 I 

I 203 20:1 '.WI 

2 113 1-t:1 143 

3 114 11-1 113 

4 07 07 07 
5 85 85 86 

10 67 67 66 

Number or iterations for CH on symmetric problem = 34. 

The number of iterations required for the CH method to converge on the 

symmetric problem is also given for comparison. These results can also be 

compared with the predicted number of iterations for the symmetric case. Using 

the standard Chebyshev bound (see Section 4.2), the predicted number of 

Heratious to reduce the initial 11orm or the residual by 10-6 is 23 for a matrix 

with a ic(A ) = 10, and 73 for a matrix with a ic(A) = 100. 

ln these test cases the noise level does not affect the convergence behavior 

of the GCR(k) method. This phenomenon can be explained as follows. The 

unperturbed matrix A has all simple eigenvalues. lu thb c11Se, the eigenvalues 

and eigenvectors of A are both continuous functions of the perturbation (see 

Wilkinso11 (1065)). Furthermore, the noise level is small e11ough that tlie 

perturbed matrix al:so has all simple eigenvalues. Therefore, the matrix A (t:) has 

a complete set of eigenvectors. Applying Tl,eorcm 3.2, we obtain the bound 
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llrdl 2 :'.S 1e(T) min max lq;(>.)l·llroll2-
9, E P, >-E >.(A) (5.1.3) 

where T is the matrix whose columns are the eigenvectors or A. The matrix T 

is a perturbation of an orthogonal matrix since A is symmetric, which implies 

that T is probably well conditioned. Therefore, as long as the noise level is not 

larger than half the separation distance between eigenvalues, the matrix T 

should remain well-conditioned, which implies that the bound In (5.1.3) should 

not change by much. 

The fourth test case investigates the effect of an isolated large eigenvalue 

on the convergence rate. In the case of an isolated large eigenvalue the 

condition number of the linear system may predict a convergence rate much 

larger than the one observed. As Cline (1976) has shown, the convergence rate 

really depends on the effective condition number, that is the condition number 

of the matrix if the large isolated eigenvalue were removed. The purpose of this 

test case is to find out if this property is preserved for the case of a small 

nonsym metric perturbation. In this test c11se the matrix A hn.'1 n-1 uniformly 

distributed eigenvalues in [1,10), and 1 eigenvalue at 100. Thus the condition 

num hrr of A iR cq11nl to 100, but the elTective condition number is equal to 10. 

Table!! 5.12 shows thnt the isolated lnrgc eigenvalue docs slow down the 

convergence rate, but only as expected from the analysis for the symmetric case. 

Compnring Tnhlrs 5.10-5.12 we sec that the test case with the isolAkd lnrge 

eigenvalue (Table 5.12) is converging at almost the same rate as the test case 

61 

with a condition number= IO (Table 5.10). This elTect is even more pronounced 

!IS the number of saved directions increases. 

Table 5.12 
One Isolated Large Eigenvalue at >. = 100; N = 50. 

Number of Iterations 

k Noise Level 
10~ 10-3 10-I 

1 50 50 55 
2 35 35 41 
3 28 24 30 
4 25 27 28 
5 23 24 24 

10 21 21 21 

The last test cases use a small variation of Jordan blocks. In these test 

cases the matrix A is formed by setting the diagonal elements equal to 1, and 

the superdiagonal elements equal to o, that is, 

). () 0 

0 ). () 

.,=loo>. 

0 0 0 

0 
0 

() 

). 

This Is an extreme case of a nom,ymmclrlc matrix In the 1'1'111'C that It hai, 

exactly 1 eigenvector regardless of the size of the matrix. Table 5.13 records the 

results for the test cases whrre a= 0.1, and er= 0.5. These test mntricrs 

produce results very similar to test case 1, where WI' had small perturbntkms to 
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tl11· ideulity matrix. 

Table 5.13 
Number of ltcraliomi to Converge vcrSU!i o; N= 10. 

N11111bcr of ltl"ratious 

k O' 

0.1 0.5 

1 6 15 
2 6 14 
3 6 14 
4 6 13 

5 6 13 

IO 6 IO 

Table 5.14 displays the results for a= 1, and various dimensions. The last 

row of this table &;plays the number of iterations necessary to converge using 

the standard CR algorithm, which iu tl1is case is equivaleut to Orthomiu(l ). 

These result verify that taking more directions does not necessarily improve the 

convergence rate. Another point to notice is that the convergence rate does not 

improve substantially uutil we use the GCR(n) method. 
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Tat.It· r,.1·1 
Number of lteratio11s to Co11v1.,rge for o: = I, Jordau Blocks. 

Number of ltcrat.ious 

k N 
5 JO :!O f,() 

1 2(i 41 n:1 110 

2 20 40 67 126 

3 33 58 71 133 

4 5 50 71i 135 
5 5 5-1 75 146 

10 - 10 81 154 

CH 26 41 (j(l 140 

In Table 5.15, we tabulate various properties of the test matrices which can 

be used to predict the rate of convergence. 

Table 5.15 
Spectral Properties of Jordan Blocks. 

(t N IIAII ,c(A) 11 ll II h 

0.1 10 1.006 1.21 0.006 0.18 

0.1 50 1.100 1.22 0.100 0.18 
0.5 10 1.480 2.8·1 0.480 0.64 
0.5 50 1.400 2.00 0.400 0.67 

1.0 5 1.866 13.03 0.866 0.112 

1.0 10 1.060 48.37 0.1160 0.02 

1.0 20 1.080 I 78.1 0.080 1.00 

1.0 50 2.0 105·1 1.000 1.00 

Herc 6 is the normalized error given by 2 II R II / II A II -

Notice that for the cases with a= .1, the condition number of the 

symmetric Jmrt of A is close tu I, which implies thal the GCH(k) method 
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applied to this test cn.sc should behave similarly to the test cases where the 

GCR(k) method was applied to small perturbations of the identity matrix. For 

the cases with a = 0.5, the hounds in Tables 4.2-4.6 predict that GCR(2) is 

probably optimal, since the error bounds Bt achieve a minimum for k=2. 

Unfortunately the cases with a = 1.0 yield error bounds greater than 1.0, so 

that we cannot use Tables 4.2-4.6 to predict a convergence rate. 

CHAPTER 6 

Conclusions 

In this study we analyze the behavior or conjugate residual methods for 

almost symmetric linear systems. The conjugate residual method, which is a 

popular method for the solution of symmetric positive definite systems is 

presented and shown to have a convergence rate which depends on the v'11:(A ). 

We also present the GCR methods, proposed by Eisenstat, Elman, and Schultz. 

Their convergence rate for the. GCR methods depends on the 11:(A ), and is 

similar to the steepest descent bound. The main result of this study is a new. 

convergence theorem for the application of the GCR methods to almost 

symmetric linear systems. This theorem shows that the GCR methods have a 

convergence rate for the perturbed problem which is a small perturbation of ttie 

convergence rate for the CR method applied to the unperturbed problem. \.Ve 

also give several applications for special distributions of eigenvalues, which show , 

that the GCR methods on the perturbed problem behave similarly to the CR 

method on the symmetric problem. In addition, some of the analysis Indicates 

that the clustering or the eigenvalues determines how many previous directions 

to save in the GCR(k) methods. 
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There arc still >10111c 1111e:1Lio11ll lcfl u11aw1wered. The analysis u.•,ied in Lhi,; 

study is a perturliational analysis, and like uiost analyse:1 of thi:i type it work:! 

best for small perturbations. We remark that for large perturbations the error 

bounds predicted l,y Lhc theory arc meaningless. There i:1 :1till a question of 

wheLher the error hounds derived in this study cau be sharpened for large 

perturbation:;. Another interesting 11uc:;Lion relates Lo roundoff error. Since 

roundoff error may be considered a :;mall non:;ymmeLric perturbation Lo a 

symmeLric operntor, iL may be possible to apply thb work Lo develop a roundoff 

error a11alysb for Lhc conjugate gradient methods. 
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