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ABSTRACT

This stur!y concerns the use of conjugate residual methods for the solution
of nonsymmetric linear systems arising from seismic inverse problems. We focus
on an application which has two distinguishing features. The first feature is that
the linear system is not readily available. The second feature is that the linear
system is almost symmetric. We state and prove a new convergence theorem for
a class of Generalized Conjugate Residual methods which shows that in some
cases the perturbed symmetric problem can be solved with an error bound

similar to the one for the symmetric case.
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CHAPTER 1

Introduction

1.1. Statement of the Problem

This study concerns the use of conjugate residual methods for the solution
of almost symmetric linear systems such as those arising from seismic inverse
problems. The conjugate residual method was originally developed for
symmetric positive definite systems, and is usually both efficient and eflective
over a wide range of problems. Many important physical problems, however,
give rise to nonsymmetric linear systems (see Concus and Golub (1976),
Vinsome (1976), Symes (1982)). In this study, we focus on an application arising
from a seismic inverse problem which has two distinguishing features. The first
feature is that the linear system is not readily available. This means that. for
most practical problems we must resort to an iterative procedure. The second
feature is that the linear system arising from the seismic inverse problem is

nearly symmetric.

Many authors have attempted to generalize the conjugate gradient methods
to nonsymmetric systems. One such example is the class of Generalized
Conjugate Residual (GCR) methods suggested by Eisenstat, Elman, and Schultz

(1983). They prove convergence, along with a rate of convergence, for these
1
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wmelthods. The convergence rate derived for the GCR methods is similar to the
convergence rate for steepest descent, which can be considerably slower than the
rate for the conjugate gradient methods, Since the nonsymmetries in our
application are smasll, it seems plausible that the couvergence rate for the
pounsymimetric conjugate gradient methods might be similar to the convergence
rate for the symmetric problem. In this study, we state and prove a new
convergence theorem for a class of GCR methods which shows that in some
cases Lhe perturbed symmetric problem can be solved with an error bound

siilar to the one for the symmetric case.

1.2. Motivation

The velocity inversion problem is a8 member of a class of problems knowan
83 seismic inverse problems. The idea behiud the seismic inverse problem is to
determine a set of parameters describing a mediumn, such as the earth, from
another set of data usually given on the boundary of the medium. A typical
example is the exploration for oil whereby small charges of explosives are set off
near the ground and the resulting echoes are recorded at receivers placed near
the surface at certain distances away from the explosion. The object of the
seismic experiment is to determine a set of parameters that describe the

structure of the earth from the data taken at the receivers.

By the velocity inversion problemn we mean the problem of determining the

sound speed structure of a medium from its response to an energy source.

3
Consider the one-dimensional velocity model:
1 2 _ g2
(—2—-—3,—3,)11 =0, z >0,
c¥(z)
(09,8 =-f(t), z=0, (1.2.1)
u =0, z >0t <0,

Here c(z) is the wave speed, f(t) is a source wavelet, and u(z,t) is the wavefield.
ln our example f(t) is the energy source, that is, the explosion. The wavefield
uz,t) may be thought of as displacement or pressure, In this study we assume

J(t)is given and that ¢(0) is known from measurements taken near the surface.

Defline a seismogram by

s(t) = Bua!z‘,t!

£=0

The seismogram may be thought of as the pressure or displacement measured at
the receivers after the explosive charge is set off. Notice that every quantity in
the boundary value problem (1.2.1) is fixed, except for ¢(z), so that if the wave
speed is varied then the wavefield u(z,t) changes. Since the seismogram

depends on u(z,t), it may be regarded as a function of ¢, that is,

§ = F(c). (1.2.2)
The relation (1.2.2) is known as the forward problem. By the snverse problem
we mean the problem of determining ¢ given a seismogram s. '

As in most physical experiments, the data is known to have some noise.

Under these conditions it is unlikely that we can fit the data exactly. Instead



we consider the least squares problem.
min |le - F{¢)||% (1.2.3)

This is a nonlinear feast squares problem. A natural choice to consider for
solving this problem is some type of Newton method. For example consider the
Gauss-Newton method

J*J be = -J*(F(e)s), (1.2.4)
where J = DF(c), J* is the adjoint of J:
<J'z,9y> = <z,J-y>, - (1.2.5)

and <z,y> denotes the L2— inner product. In order to calculate a Gauss-
Newton step it is necessary to compute the actions of J and J* on vectors.

Symes (1985) shows that the action of J on a vector is given by
J(¢)bc = <DF(c)bc,F(c)-s>.

The gradient DF(c)6c may be computed from the solution of the

perturbational problem

1 26c 9%u
82 -90) by = ——
eY2) ¢ ) b e ot?
8,u =0 2=0,
Su = 0, t <0,

(

(1.2.6)

where u(z,t) solves the boundary value problem (1.2.1). The gradient is then

computed by

DF(c)bc = —

The adjoint is calculated by a similar process.

Two remarks are in order. The first remark is that J-6c is defined by the
solution of a boundary value problem. The second remark is that each
evaluation of J-6c is subject to a certain amount of discretization error. Both of

these remarks also apply to the computation of the action of J* on a vector.

Let us consider the consequences of the second remark. Assume that the
boundary value problem (1.2.1) is discretized on a rectangular grid and solved
by a ﬁnite-di}ference method. Let the matrix A denote a discretization of J,
and let the matrix A denote a discretization of the adjoint J*. Then we can

write the discretized version of equation (1.2.4) as
AAz = Ab. (1.2.7)

where A is an m Xn matrix, § is an m-dimensional vector, and z is 2~ n
dimensional vector. Depending on the discretization used, both m and n can be
very large. Typical values are m==10,000, and n—=>5,000.

Notice that equation (1.2.4) yields a symmetric positive definite system.
However, neither the matrix A nor the matrix A A is readily available, since the
action of A on a vector must be computed from the solution of a boundary
value problem. Moreover, given the size of a typical problem, computing either
matrix by using a set of basis vectors is entirely out of the question. Therefore

direct methods for the solution of the discretized version of (1.2.4) can be ruled



out.

Among tbe iterative methods available, the conjugate gradient aigorithin
proposed by Hestenes and Stiefel (1052) is a populur method for symmetric
positive definite systems. This approach also has the advantage that we do not

have to access the elements of the matrix A directly.

Unfortunately, the discretized equation (1.2.7) is not syminetric. When we
discretize both J and J*, we cannot hope to satisfy the adjoint relation (1.2.5)
exactly for the operators A and A , since the discretization errors generated by
the computation of 4 and A are independent. If (z,y) denotes the standard I,

jnner product, then

(A-In ll)7£ (z, Ay), (1.2.8)

that is, A # A T We can model this discretization error by the system

Nz =§, (1.2.9)
where

-~

N= (AT +ETn, (1.2.10)
F= (AT +ET),

and the matrix £ can be thought of as noise generated by the calculation of

ATz, The matrix £ is unrelated to the matrix A so that N is nonsymimetric.

Notice that for simplicity we have chosen to model the perturbed system as if

the discretization error aruse from the computation of 4 Tr.

7

At first glance, it appenrs that if the discretization errors are small then the
behavior of the conjugate gradient method for this problem might be similar to
that for the symmetric problem, Unfortunately this is not the case. Symes
(1982} has shown that even for small discretization errors, the standard
conjugate gradient method applied to equation (1.2.7) may diverge. An
explanation of this behavior was provided by Dennis (1984). It is well-known
that the conjugate gradient method may be viewed as a minimization algorithm
applied to a certain quadratic functional. The conjugate gradient method
minimizes this functional by eomputing a search direction and taking a step
along this direction. ln this application the search direction depends on the
vector ATz. Since the calcutation of A Tz is contaminated by noise generated
in the discretization process the search direction computed by the conjugate
gradient meth<;d may not be a descent direction. Moreover, using the standard
fornulas for the conjugate gradient method (Hestenes and Stiefel (1952)) the
steplength will be positive, so that the mew iterate must increase the function
value. Therefore, the sequence of iterates generated by the conjugate gradient
method on this problem is not guaranteed to converge to the minimizer, and
worse the iterates may diverge. This suggests that we use a nonsymmetric

version of the conjugate gradient mcthod.
Many authors have worked on the problem of generalizing the conjugate

grudient method for nonsymunetric systems, However, much of this work has

been in the field of elliptic equations, especially those problems arising in
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reservoir engincering. Our application is diflerent. The discretization errors can
be adjusted depending on how accurately we solve the various boundary value
problems. Therefore, even though the problem is nonsymmetric, it is best

thought of as a small perturbation of a symmetric operator.

In Chapter 2, we define the notation used and review the basic linear
algebra theory necessary in this study. Chapter 3 introduces Krylov space
methods for the solution of linear systems. An example of such a method is the
class~ of Generalized Conjugate Residual (GCR) methods, proposed by Eisenstat,
Elman and Schultz (1983). Among these methods, the truncated and restarted
versions of GCR are discussed. In Section 3.4 we present some of the
convergence theorems for these methods proved by Eisenstat, Elman and
Schultz. The nonsymmetric problem is discussed in Chapter 4. We briefly
review this field and present the main result of this study in Section 4.3. We
show that the GCR method converges with a bound which deviates from the
error bound for the symmetric case by a term which depends on the size of the
nonsymmetry. An application of the main result for the restarted version of the
GCR method is also presented. Several other applications for special
distributions of eigenvalues arc presented in Section 4.4. In Chapter 5 we
present some numerical results for test problems dealing with small
perturbations to a symmetric operator. Chapter 6 contains some concluding

remarks.

1.3. Goals

In this study, we investigate the behavior of conjugate residual methods for
the solution of almost symmetric linear systems such as those arising from the

velocity inversion problem, with particular emphasis on the following factors:

1) Robust modifications to econjugate residual methods in the
presence of small errors.

2) Generalizations of the Chebyshev analysis.

3) A better understanding of the behavior of nonsymmetric conjugate

residual methods for nearly symmetric problems.



CHAPTER 2

Notation and Preliminaries

This chapter deals with notation and preliminaries used in this study.
Section 2.1 introduces the notation. ln Section 2.2 we brielly review the basic

linear algebra theory necessary in this study. Section 2.3 discusses iterative

methods for the solution of linear systemns. Matrix polynomials, which are used’

extensively in later chapters, are also introduced in this section.

2.1. Notation

Let x and y be real n vectors, und let A be au n Xn real matrix. By (z,y)

we mean the standard {, inner product. The l;, norm is defined by
fzlly = (z,2)*.

The set of eigenvalues, M{A) = {3 (A4),- - - X, (4)}, of a matrix A are
the n roots of the characteristic equation, | A — A | = 0, of A. Eigenvalues

are ordered

l)‘||2|)‘2|2 Z|)‘n|-

The spectral radius, p(A) of an n X n mutrix A is delined by

10

11

pA) = hlgt;{“lk.-l‘

2.2. Basic Linear Algebra Theory

Much of the theory in this study revolves around symmetric positive
delinite matrices. A symmetric matrix satisfies the equation A = AT . The
matrix A is said to be positive definite if

(z,Az) > 0 forallz #£ 0.

For nonsyminetric matrices we define the splitting

A=M-R,

where
M= -;-(A +AT),
R=-+(-aT)
2

The matrix M is called the symmelric part of A; the matrix R is called the
skew-symmelric part of A. Many of our proofs require that the symmetric part

of A be positive definite.

The condition of a matrix turns out to be an important concept. By an ll-
conditioned matrix we mean a matrix where small changes in 2 may cause large
changes in the product Az. For any vector norm |||, define a corresponding

matrix norm by

QA
AN = s an



12
In particular, it can be shown ( sec Noble and Daniel (1977) p. 442 ) that for the

Euclidean vector norm || || ,, the corresponding matrix norm is
NA |, = Vmax \(ATA).

Unless otherwise stated we will just write || A || to denote the Euclidean matrix

norm. The condition number, (A4 ), of 2 matrix A can now be defined by
w(A) = |jA]l- 1AMl
If the matrix is symmetric then it is straightforward to show that

| 2(4)]

") =TT

2.3. Iterative Methods
Counsider the system of linear equations
Az = b (2.2.1)

Techniques for solving this system of linear equations are usually classiﬁed.as
cither direct or iterative methods. A direct method is one which guarantees a
solution to equation (2.2.1) in a finite number of operations. The number of
‘operations depends on the size of the system. If the matrix A is large then
direct methods tend to take considerable time and storage. This may be reduced
when the matrix A has a special structure, in which case, special direct methods
may take advantage of the particular structure ( see Duff (1977) ). Regardless of

the size or structure however, direct. methods always assume that the cocflicients
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of the matrix A are available. This is not the case in our application.

In our application, the entries of the matrix A are not readily available,
However, we can compute the action of the matrix A on a vector by solving a
boundary value problem. This leads us into the area of iterative methods. By
an iterative method we mean any method which generates a sequence of
approximations to the solution of equation (2.2.1). Iterative methods have the
advantage that they do not require that the matrix A be stored. The
disadvantage is that they may converge slowly or may even diverge for some
applications. In particular, we are interested in polynomial-based iterative

methods. These methods generate a sequence of iterates of the form
7 = 2o + P(A)(z - z), (22.2)

where P,(A) is a polynomial in the matrix A of degree at most k. If we denote

the residual r, by

n=>5-Az, (2.2.3)
then equation (2.2.2) is equivalent to

e = Q(A)ro. (2.2.4)

Here Q;(A) is a polynomial in the matrix A of degree at most k, such that

One important and useful fact about matrix polynomials is their behavior
under orthogonal transformations. For any matrix polynomial P;(4), and any

orthogonal matrix Q ,if A = QT TQ, then
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PyA) = QTP(T)Q (22.5)

If the matrix A is symmectric then it may be dingonalized by nnvorthogouul

watrix so thut 7 = ding(X, -~ -, N\,) . As 8 consequence equation (2.2.5)

simiplifies to
Py(A) = QTdiag(Pr(N). - \Pe(M))Q-

In other words the matrix polynomial in A is reduced to a polynomial in the
real variables X,

lterative methods require a stoppiug rule. Usually a measure is defined in

terms of how close the approximation is to the solution; the method terminates

when this measure is small. We discuss two measures commonly used in the

literature.

For a symwmetric and positive definite matrix A, deline the error functional
A P 0o
En)=(z-2,A@ - )" = llz-z || 4,

where x is the solution to the linear system (2.2.1). Although this appears to be
a reasonable measure of the error, it suflers from two deficiencies. The first is
that, in general, we do not know what the solution x is. The second is that the
A-norm is only valid when the matrix A is positive definite. However, F, will

be used in some of our convergenee analyses.

A second measure is based on the error functional

Efn)=(A(z - 5,)A(z ~ )" = ||b Az ||,

15
This error functional is more practienl for many iterative procedures sinee the
residual is already computed. This measure is also used in our convergence

analysis,



CHAPTER 3

Krylov Space Methods

This chapter introduces Krylov space methods for the solution of linear systems.
Section 3.1 defines a Krylov space method. In Section 3.2, we discuss the
Generalized Conjugate Residual (GCR) algorithm and present some of its basic
properties. Section 3.3 discusses two modifications to the GCR algorithm called
truncated and reslarted methods. In the last section of this chapter, we review

some of the convergence results for the GCR methods.

3.1. Generalized Conjugate Residual Methods
Consider the system of linear equations
Az = b, ' (3.1.1)

where z and & are n dimensional vectors and A is an n X n real matrix. If the
matrix A is large and sparse then this system is often solved by iterative
procedures. In this chapter we present several methods proposed by Eisenstat,

Elman, and Schultz (1083), which are in the class of Krylov space methods.

By a Krylov space we mean the vector space defined by

16
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k(v,A k) = span{v, Av, - - - ,A"“‘v}.

A Krylov space method is an iterative method that approximates the solution to

equation (3.1.1) by generating iterates of the form
I € 1o+ K(rg.A k),
where 7 is an initial point, and rgyis its corresponding residual.

There are many examples of Krylov space methods in the literature (for a
survey see Saad (1985)). We concentrate on a particular class of methods,
namely the Generalized Conjugate Residual (GCR) methods. In the following

discussion, we now assume that the symmetric part of A is positive definite.

Eisenstat, Elman, and Schultz (1983) suggest the following class of descent

algorithms for the solution of equation (3.1.1).

ALGORITHM 3.1. Generalized Conjugate Residual Method

Choose z,
Compute ry = b-Az,
Set pg == rq

For 1=0,1, - - -

0 = (r:,Api)
" (Api Ap;)
Tiyy = Z; + a;p;
fig =1 — G;Ap;

Compute p, .,

The particular choice of a; is one that miuimizes || ri;, ||, as & function of a so
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that || r, || decreases at each iteration.

There are different versions of this algorithm; these vary in how the new

direetion, p,,, is computed. If we impose the condition that

(ApsAp)) =0 for 1 3¢5, (3.1.2)
then at each iteration z;,, minimizes the residual over the afline space
Zg+ <pg W, >. Any set of vectors which satisly condition (3.1.2) are said

to be A TA-conjugate. Condition (3.1.2) leads to the following formulas:

;
P =riagt E b}')l’p
1=0
(3.1.3)
- (Ary 1 Apj)

b= —————L ;=01 ",
’ (AP,’,AP,')

The algorithi requires storage for the solution vector «, the residual r, the
vector Ar, and 2(i+1) additional vectors for p and Ap, where ¢ is the iteration
number. The vectors Ar;,; and Ap,,,; can share storage thereby reducing the
total storage to 2(s+1) + 2 vectors of length n. The work requirements are
[3(s+1) + 4 |n  multiplications plus 1 matrix vector multiplication per
iteration. It is thus apparent that as ¢ increases the method requires a large

amount of storage and computations.

19

3.2. Restarted and Truncated Methods

As noted in Section 3.I, the GCR method becomes expensive as the
iteration proceeds. At each iteration we must orthogonalize the new direction
aguinst every previous direction. To overcome this dilficulty, we could
orthogonalize the new direction against some small number of previous

directions. This can be accomplished using a variety of different methods.

One alternative is to orthogonalize the current direction against the last k

directions. We refer Lo any such method as a truncaled method.

The formulas for the direction vectors are given by:

v ,
piai=rint 3 bj(‘)Pj’ 1 =01, -
y=i-k+1

(3.2.1)

b = ZALAR)
(Ap; Ap;)

Another method for saving storage and computing time is to restart ‘the
algorithm every k+1 iterations, using the eurrent estimate for the solution as
the new starting guess. Any such method is referred to as a restarted method,

Both of these approaches are discussed by Eisenstat, Elman, and Schultz
(1983). Their version of the truncated method is also known as Orthomin(k}
(see Vinsome (1876)). The restarted method is known as GCR(k). The spetial
case for k=0 is known as the Minimuin Residual (MR) method. Work and

storage requirements for these methods are presented in Table 3.1.
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Table 1. Work nnd Storage Requirements for GCR methods.

GCR Orthomin(k) __ GCR(k) __MR
(3(i+1)+4)n (3k+4)n ((3/2)k+4)n 4n

Work/Iter + 1My +1 My +1Mv_ | +1Mv
Storage (2(i+2) + 2)n (2k+3)n (2k+3)n 3n

Mv = Matrix-vector multiply.

3.3. Convergence Results

The basic properties of the GCR method are given by Eisenstat, Elman,
and Schultz (1983). Since the direction vectors are chosen to be
AT A-conjugate, a direct argument shows that z,,, minimizes ||r,;,,||, over
Krylov spaces of increasing dimension. Eventually z;,; minimizes the norm of
the residual over the whole space. This can be summarized by the following

theorem proved by Eisenstat, Elman, and Schultz (1983, Corollary 3.2).

THEOREM 3.1. Let A be an nXn real matrix such that
M= (A+A T)/Q is positive definite. Then the GCR method gives the exact

solution to the system Ax = b in at most n iterations.

Although Theorem 3.1 tells us that the GCR method converges in at most
n iterations it does not provide information as to the rate of convergence of the
method. The convergence rate is given by the following theorem also proved by

Eisenstat, Elman, and Schultz (1983, Theorem 3.3).

21

THEOREM 3.2. If A is an nXn real matrix such that
M = (A+ATY2 is positive definite, and if {r;} is the sequence of residuals

generated by GCR, then

Nrille € min {|g(A)ll2 Hrolls
s eP

where P; is the class of i-th degree polynomials. Moreover, if A has a com-
plete set of eigenvectors, and if J = T VAT is the Jordan canonical form of

A, then

My < &(T) mi IE .
rille < x( ),,mG"}’. xrg%)lq.( WoAlrolle

Theorem 3.2 states that the GCR method is optimal among all
polynomial-based iterative methods. Without any information about the
structure of the eigenvalues, we cannot pick the best polynomial a priori.
However, it can be shown that all of the GCR methods converge using simple
properties derived from the iteration process. This convergence proof was

provided by Eisenstat, Eiman, and Schultz (1983, Theorem 4.4).
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THEOREM 3.3. If A is an warbitrary real matrix such that
M = (A+AT)/2is positive definite, and R = (AT-A)/2. and if {r;} is the

sequence of residuals generated by GCR, Orthomin(k), GCR(k), or MR then

22 a(M) e
lirclls < 1"“"1'""“"'_,-—“ [Irolla
xIXIIX(A A)
and
i/2
ME,(M)
Hrills < - [Iroll2

L (M P (M) + F(00)

Elman (1982 p. 141) points out that these bounds are probably not sharp,
and his numerical experiments seem to indicate this. We note that if A is
symmetric and positive definite so that R = 0, then the second bound
resembles the steepest descent bound (see Luenberger (1973)). This is not too
surprising, since the proof for these error bounds is the same for both the GCR
method and the MR method. If we don't save any previous directions, that is
k=<0, then all the methods reduce to the MR algorithm which resembles the
steepest descent algorithm.

We also note that Theorem 3.3 does not tell us how to choose k. Current
folklore is that a value of k==1 or k=2 provides s good tradeoll between the
work and storage requircments and an improved rate of convergence. However,

this type of analysis is inadequate for determining the effect of the number of
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saved directions on the rate of convergence. We show in Chapter 4 how to
derive a sharper error bound which can be used, in some cases, to determine the

optimal number of directions to save.

For the special case of a symmetric operator, the algorithms take on a
particularly simple form. An argument parallel to the one used by Eiscnstat,

Elman, and Schultz (1083 Theorem 4.5) shows the following.

THEOREM 3.4. Let A be an n X n symmetric positive dclinite matrix.

Then Orthomin(l) generates the same iterates ss the GCR method.

In essence, Theorem 3.4 states that when the GCRR method is applied to a
symmetric positive definite matrix the algorithm reduces to the well-known
Conjugate Residual Method. This will become important in Chapter 4 when we
study the eflects of small perturbations to a symmnietric operator on the

convergence behavior of the GCR algorithm.



CHAPTER 4
The Nonsymmetric Problem

This chapter discusses the solution of large, sparse nonsymmetric linear systems.
Krylov methods, introduced in Chapter 3, are discussed in relation to the
nonsymmetric problem. First, we review some previous work for nonsymmetric
problems. In Section 4.2, we present the standard Chebyshev convergence
analysis for the Conjugate Residual method. The main result is presented in
Section 4.3. We show that the GCR(k) method converges with a bound which
deviates from the error bound for the symmetric case by a term which depends
on the size of the nonsymmetry, provided that the method is restarted
sufficiently often. Section 4.4 treats two applications of our main result for

special distributions of eigenvalues.

4.1. Previous Work

The Conjugate Gradient method is a popular method for the solution of
symmetric positive definite linear systems. However, many important problems
give rise to nonsymmetric linear systems, which are usually large and sparsc.
Therefore, it scems natural to generalize the methods used for the symmetric

case to the nonsymmetric case. There are various ways to extend the Conjugate

24

25
Gradient method to nonsymmetric systems. Most of these modifications are
generalizations of the Conjugate Gradient (CG) method introduced by Hestenes
and Sticfel (1952), or the Conjugate Residual (CR) method developed by Stiefel
(1955). These methods impose conditions on the iteration method which force

certain properties of the Conjugate Gradient method to be satisfied.

Historically, the first suggestion for using the Conjugate Gradient method
for general linear systems is due to llestenes and Stiefel (1952). They suggested
using the CG method on the normal equations. If the matrix A has full rank,
then the normal equations will be symmetric and positive definite. Fortunately,
it is not necessary to form the product ATA since this could lead to a
significant loss of precision. Moreover, use of the normal equations has the
disadvantage that the convergence rate for conjugate gradients depends on
x(ATA) instead of x(A). If the problem is already moderately ill-conditioned
then the resulting iteration scheme could eonverge slowly.

The Generalized Conjugate Gradient (GCG) method developed by Concus
and Golub (1976), and by Widlund (1078) was an attempt to modify the CG
method to nonsymmetric systems. The GCG method uses a three term’
recurrence formula for the solution update where certain scalars are chosen to

make the residuals of the iteration mutually orthogonal. Consider the iteration
T =Ty F w5 -5,,), ¢=001---. (4.1.1)

If we force the residuals of this iteration to be mutually orthogonal, then we can

solve for the scalars w;. The formulas are given by
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w, =1
(/)] 112
u,+,=[l+~'.‘:'_ﬁ =12, ( )
]

where 4, — (1,1, ).

Axelsson (1079) developed a generalization of the conjugate residual method
thut differs in the formulas for the solution update. Axelsson computes the
steplengths, g, by solving the least squares problem:

win [[ B0)al) ~ 1], (4.1.3)

where

BUY) = [Apy, - - - ,Ap;].
The solution to the least squares problem (4.1.3) is equivalent to minimizing the
residual at each iteration.

Young and Jea (1080) proposed a modification, Orthodir, to the CR
method. The formula for the direction vectors is replaced with a more

expensive calculation to Lry to improve convergence. In particular, they choose

] .
Piv1 = Apig + 3 01p;, (4.1.4)
i=o

2
b = - (A%p; Apj)

(Apj Apjy
Both Axelsson’s method and Orthodir, together with another method

proposed by Saad (1083) called GMRES, are mathematically equivalent to GCR.
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They all share the property that at each iteration the residual is minimized over
a certain Krylov subspace.

Saad (1981) used the relationship between the conjugate gradient method

and Lanczos (1950) method to develop a class of oblique projection methods.

Arnoldi's (1951) method, which is a generalization of the Lanczos method for

nonsymmetric systems, is the basis for these projection methods.

Other authors have produced methods not based on the CG method for
lurge nonsymmetric systems. Manteuffel (1977) developed o nonsymmetric
version of the Chebyshev method with an adaptive procedure for estimating
eigenvalues, The main disadvantage of this method is the need for good
estimates of the eigenvalues of the linear operator. These estimates are usually

difficult to obtain even for the simplest problems.

Gay (1979) analyzed Broyden’s (1965) method for linear systems. Although
Broyden's method was originally developed for nonlinear systems, Gay showed
that for a nonsingular linear system, Broyden's method converges in at most 2.n
iterations for a system of order n, and proved that there exist systems for which

2n iterations are required.

We concentrate on the GCR methods developed by Elman (1982), who
showed that several versions of the GCR method converge under the assumption
that the symmetric part of the matrix A is positive definite. There are two

distinguishing features in our application. The first is that we do not have

access to the coefficients of the matrix A, and so we cannot form A7 (see
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Section 1.2). Unfortunately, in our application we require the vector A Tz inall
of the above algorithms. The second feature is that the size of the
nonsymmetries is small. Elman's analysis predicts a rate of convergence which
is too pessimistic in many cases. One would hope that the convergence behavior
for our type of problem is similar to the standard CR methods applied to the
symmetric problem. We show that for small perturbations to a symmetric
operator that the error bound for GCR is not too diflerent from that given by
the error bound for CR on the symmetric system. Unfortunately this bound
deteriorates as the number of iterations increases so that we may have to restart
the algorithm to obtain an acceptable convergence rate. First we review the

standard convergence analysis for the symmetric problem.

4.2. Convergence Analysis for the Symmetric Problem

The standard Chebyshev analysis for Conjugate Gradient methods is well
known ( see for example Chandra (1978), Cline (1978), Axelsson (1984) ) and
yields optimal error bounds for the algorithm. The analysis for both the CG
and CR mecthods is the same, but since we are mainly interested in the GCR

methods we only present the error bounds for the Conjugate Residual method.

Consider the system of linear equations
Ar = b, (4.2.1)

where the matrix A is symmetric and positive definite. Let P: denote the class

of polynomials p, of degree k such that p,(0) = 1. The following result is due

.
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to Chandra (1974, Theorem 3.5).

THEOREM 4.1. Let A be a symmetric positive definite matrix. Then

for any k > 0, the iterates of the Conjugate Residual method satisfy

Irells < min, max 1pO)] oz

Theorem 4.1 states that the conjugate residual method generates the
optimal polynomial with respect to the {, norm of the residual. The particular
error bounds f(?r CR found in the literature are all derived by considering
specific polynorﬂials. For the general case, Engeli, Ginsburg, Rutishauser, and
Stiefel (1059) suggest as a candidate polynomial, p;, the one that minimizes the
maximum value in an interval containing the spectrum, MA). The solution

using this criterion is given by the normalized Chebyshev polynomial

lzx—(xl+x,)]

\ * X - A, )
) = , 4.2.2
e()) N W (

k[ Xn ')‘l

where Ty(z) = cos( karccos z ), -1 < z < 1. Using the polynomial, p,(}),
the following well-known bound can be derived. Although the proof can be
found in scveral places (sece for example Cline (1976)) we include it for

completeness.
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THEOREM 4.2. Let A be a symmetric positive delinite matrix. Then
for uny & > 0, the iterates of the Conjugate Residual method satisfy the er-

ror bound

k
ety < 2221 irol, (423)

where £ = K(A) = N/\,.

Proof. Cousider the normalized Chebyshev polynomial defined by (4.2.2).
Clearly py(\) € P:, so that an appplication of Theorem 4.1 yields

Tklzx;fx:+x,)]!

A,
T‘[ W ]

Hrelly < max

s lirolls (4:2.4)

Using a property of Chebyshev polynomials that | Ty(z)] <1, -1 <2 <1,

. 2\ - (N +X,)
and noting that | ———————] < 1(4.2.4) reduces to
xl_ xu
liralls < ‘ lrolls
M+, l (4.2.5)
; )‘n'xl

Xl+xn . “
To bound the term, Tk[ ], consider the kth degree Chebyshev

xn—xl
polynomial,

Ty(2) = cos(kurccos z2). (4.2.6)
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From the definition

cos(a) = —;-(ei" + ¢,

and the relation
¢' ¥ = (cos 6 + isinf)*,

equation (4.2.6) can be rewritten as
i 3
Ti(z) = %[(z + V1) +(z-V22- x)‘], (4.2.7)

For the value z = (A + X, ) / (A, - X)) = (1 + &)/ (1 - x), (4.2.7) becomes

x.+x ]__[ \f:_c;ll]‘+ %_11_]*} (4.2.8)

where « is the condition number of the matrix A. Combining (4.2.8) and (4.2.5)

results in

Iralls <2 [[“f[—:]r) : [—‘}%‘—]} hrolla: (429

Notice that, k(4 ) > 1, so that

vk - Ve+1
0’<‘\/_+1<1< V-1’
and hence
A.——l \/—+l k-1)
[ 7;‘;— [ } 17:7 4.2.10)

The prool is completed by substituting (4.2.10) into (4.2.6). d
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The crror bound (4.2.3) depends on two facts, both of which are properties

of symmetric matrices: (1) the eigenvalues of the matrix A are known to be real,
(vi) the matrix A is guaranteed to have a complete set of orthogonal eigenvectors
and hence is unitarily diagonalizable. Neither one of these two properties is true
in general for a nonsymmetric matrix and makes the analysis of Krylov space

methods for nonsymmetric matrices more difficult.

In practice, the error bound (4.2.3) can be quite pessimistic for certain
problems. Whereas this is the best error bound for the general case, the bound
can be improved for special distributions of the eigenvalues of A. Axelsson
{1984) derived an improved error bound by assuming that the eigenvalues were
distributed over two well separated intervals of equal length on the positive real
axis. Jennings (1977) and Stewart (1975) also obtained results for special
distributions of ecigenvalues. Jennings considered the eflect of one isolated
cigenvalue on the convergence rate. Stewart also considered the case of one
isolated eigenvalue. However, he concentrated on the convergence rate of the

cigenveclor associnted with the isolated eigenvalue.

4.3. Perturbational Analysis
The standard convcrgence rate analysis for Conjugate Gradient methods is
based on the assumption that the system is symmetric and posilive definite. We

consider the system
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Ale)r == b, (4.3.1)
where

Ale)=A + ¢, € >0,
A is an nXn symmetric positive definite matrix, and E is a general
nonsymmetric matrix such that ||E ||, = 1.

Elman (1982) has shown that the GCR method generates iterates whose

residuals are bounded by

lfrellz < max {Jq (AN {Iroll2 (4.3.2)

for all polynomials ¢, of degree k such that ¢,(0) = 1. However without
additional information on the strncture of the cigenvalues of the matrix A we
cannot deduce a general result from this bound. We point out that there exist‘
matrices for which the GCR method converges in no less than n iterations, that
is, the residual will not decrease substantially until the last iteration. This point

may be clarified by an example. Consider the matrix J defined by

A a O 0
0 ) o 0
J=]0 0 X
Y«
0 0 0 . X

In this case || g;(J)}] is on the order of 1. In fact, the minimum polynomial for
J is the characteristie polynomial (see Wilkinson (1965) p.41-42). Therefore the

GCR method will not produce any substantial decrease until k=n.



34

In many important examples the perturbed matrix is only slightly
nonsymincetric. IFor such systems we would like to consider the effect of small
perturbations on the convergence rate of the GCR method. We show that the
convergence rute iy simtlar Lo the standurd convergence rate for the CR method,

at least for the lirst few iterations.

We first prove a lemma which gives us a bound on the perturbation of a

watrix polynomial.

LEMMA 4.3. Let ¢,(D) be a matrix polynomial of degree k, where D is
a diagonal matrix, and let £ be a general nonsymmetric matrix such that

|| £ || = 1 for some consistent matrix norm. Then

N e FRIMEULY B i
p2

where ¢, are the coefficients of the polynomial ¢;.

Proof By the fundamental theorem of calculus

¢ d¢,(D+SE)

u(D+E) - ¢4(D) = [d6—— (4.3.3)
o

Taking norms on both sides of (4.3.3) and using Hoider’s inequality we obtain

D+OE
o 12200 fdo I, (434)

su
0<6<e

Hoe(D+eE) - ¢,(D)|| <

To bound the right-hand side of (4.3.4) consider the derivative term

d¢; (D+6E)
ds '

iince ¢; is a polynomial of degree k we can write

dé s 2 dé

d¢, (D +6E ¢ Y
e ) _ ——ch,(DerL)’ = Yy, HDIEY
j=0

Jsing Liebniz's rule, (4.3.5) can be rewritten as

d¢,(D+6E k . -
46 (DYE) _ Y €, L(D+6E)“'E(D+6E)l".
db J=0 =1

laking norms in (4.3.8) and using the triangle inequality yields

do(D+6LE)
ds =

A

[ z ck; L (D+SE) - E(D+6EY " ||
1=0 =1

i X
< Vil HIEN-D+SE|
=l

Substituting (4.3.7) into (4.3.4) results in the inequality

l1¢x(D+eE) - ¢(D)|| <  sup ILJ Less I-HEN-NID+EE || ] e

0<6<«

Notice that

) <
1D +eE || <

D S| IIE
o 24P o Jup LI+ J6HHIEND

HD |l + ellE Y],

1A

which we muy substitute into inequality (4.3.8) to obtain
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(1.3.5)

(4.3.6)

(4.3.7)

(4.3.8)
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|44 (D+¢E) - 4, ()| < €|l E ] z‘;}:"|c,,,| (D N+ EN. (43.9)
P

The proof is completed by using the assumption |JE |} = 1. 0

The main result of this study is a bound for the GCR method which applies
to the perturbed problem described in equation .(4.3‘1). We show that when the
GCR method is applied to a symmetric operator which has been perturbed, then
for the first few itcrations the GCR method generates iterates whose residuals
satisfy an error bound that is close to the well-known error bound for the

symmetric case.

THEOREM 4.4. Let A(¢) = A + ¢E, where A is an n Xn symmetric
positive definite matrix, and E is an arbitrary matrix such that [|E|[, = 1.

Then the GCR method applied to the perturbed system
Az = b
yields a sequence of residuals that satisfy the inequality

el o
Mol = Ve+1

k
] + Tk

where

j-1
" (—\/:—?%)TIT f:lf'lcn'l [—L——)——-K\}zi;l} (V& - 1),
X f=

== 2¢fX), and ¢;; nre the cocflicients of the k-th degree Chebyshev

polynomial.
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Proof. Since the matrix A is symmetric, it is unitarily dingonalizable, so let

A=D be diagonal. From (4.3.2)

I ll2

Teollz < oDz + g (D+eE) - g (D))o (4.3.10)

The first term on the right hand side of (4.3.10) is exactly the standard
convergence rate bound from the symmetric problem. The second term depends
on the perturbation and the polynomial chosen. To bound this term we choose

a particular polynomial and apply Lemma 4.3.

By analogy to the symmetric case consider the matrix polynomial

TI:[ 2D +eE)~ (N + x,)I]

(D E )‘l - Xn
+el)) = . 4.3.11
‘A ) N [ W ) ( )
X, =
Define
b — 2D - ()‘l+)‘")1,
Ap=d,
(4.3.12)
i = 2¢
Aimhy
Then

T (D + iE
w(D+ep) = JL FE)

M+X
n5e)
NS

To bound the second term of (4.3.10) use Lemma 4.3 to yield




38

I Te(D + ¢E)-Ty (D)l
o Xl+kn
l lk[ X.."'X| ]

g ey DI+ 2y

[l (D+eE) - g(D)]| <

< Lz
- T [ AN,
ol PV l
By (4.3.12), [{D || =1, so that
-1
e ey )
X nog=1
e (D+eE) - qu(D)]l, < | oW l l (4.3.13)
The term in the denominator is bounded ( see Cline (1976) ) by
Mty [ ve-11)"
n[ 20 [ o o)
' k o s \/; T (4.3 14)

Substitute (4.3.14) into (4.3.13) and let & = 2¢/)\; . Then (4.3.13) becomes

-1
Vi - | !

(D +eE) - ai(D)]]; < 2 \/E+l) 2 Sital ] e

where the quantity é may be thought of as a normalized error.

Define n; by

b & . Kb
N = ';—— N |¢kj|ll+:: ) (4.3.16)

which is a weasure of the perturbation in the Chebyshev matrix polynomial due

to the normalized error 6. Then the right hand side of (4.3.15) may be
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simplified to
k 1-1
\/;«l] 26 ko k(146) - 1 :
VLR R LN NP I (L) R ) Y-S
Vet 1) ™ (\/E+1)‘“,>;‘.J|"‘ Ve + 1 ( )
(4.3.17)
== Tk’
so that (4.3.15) becomes
Hee(D+el) - ¢ (D}l2 < 7. (4.3.18)
The proof is completed by substituting (4.3.18) into (4.3.10). 0

Remark 1. The values of the coeflicients ¢,; of the Chebyshev polynomials are
easily computed (see for example Lanczos (1861) p. 455). The coefficients for the

first 10 Chebyshev polynomials are provided in Table 4.1.

Remark 2. 1f 1, is a slowly growing function of k then for the first few iterations
we should get a convergence rate similar to the one for the CI} method on the
unperturbed symmetric problem. A few of the values of 7, for various values of

6 and x(A4 ) are given in Tables 4.2-4.4. Here we have used the formula

& k-1
Vi - 1 ] VK + 1 ]
=2 ' + ' 4.3.19
: [ VR Va1l | ™ 4.8.19)
instead of the expression (4.3.17). For k¥ < 10 (4.3.19) provides a tighter bound

than the asymptotic formula used in (4.3.17).
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Table 4.3. Values of 1 for Different Condition Numbers

Table 4.1, Chebyshev Coeflicients Normalized Error = 1073
Coceflicients for Ty{z) Tk.
j k Condition Number
k 10 00 1000 10000
o[1 2] 3 T 41567 s o] ——— = 3
0] 1 11111107 | 1.0110° | 1.00 10 1.00 10
1{0 1 2 | 445102 | 4.04107° | 4.01 103 | 4.00 1072
211 0 2 3}1.6710?% ) 152102 | 1.50102 | 1.50 102
310 -3 0 4 4535107 | 486102 | 4.82102 | 4.8110°?
4 (1) (5) -8 0 s 5 ] 1.6210" { 1.47 10! | 1.46 107! | 1.45 10!
3 o -2 o 16 6 | 4.60 107 | 4.26 101 | 4.22 107 | 4.22 107
o1 0o 18 0 -48 0 82 7 |1 1.3210° | 1.2010° | 1.1910° 1.19 10°
710 -7 0 56 0 -112 0 64 - 5 et : 5
8!l 1 o -32 0 160 0 -258 0 128 8 | 3.6510 3.31 10 3.28 10 3.28 10/
9] 0 9 0 -120 0 432 0 -578 0 956 9 | 9.0110° | 9.01 10° | 8.9310° | 8.9210°
10]-1 0 50 0 -400 0 1120 0 -1280 0 512 10 | 2.66 10 | 2.4210' | 2.4010' | 2.39 10!

Table 4.2. Values of 7, for Different Condition Numbers
Normalized Error = 107¢

Table 4.4. Values of 1, for Diflerent Condition Numbers

Tk Normalized Error = 107!
k Condition Number
10 100 1000 10000 T}
1 {1.2110°% | 1.0110% | 1.0010% ] 1.00 1075 K Condition Number

2 | 4.4410° | 4.0110° | 4.0010° | 4.00 10 10 100 1000 10000
311.67 10:: 1.52 10:: 1.50 10:: 1.50 10:: 1] 1m0 [ 101101 | 1.00101 | 1.00 10!
1] 5.33 1041 4.85 104 1.80 10 . 4.80 10 - 2 | 404107 { 445107 | 4.4010°! | 4.40 107}
5 | 1.61 10_‘ 1.46 10_‘ 1.45 10:‘ 1.45 1(r4 3 711.9810° {17710° | 1.7510° | 1.7510°
6 | 4.67 '04 4.24 10 4.20 10 4.20 10 4 | 6.8510° | 6.0910° | 6.0310° | 6.02 10°
7131 1072 | 119 10:: 118107 | 1.18 lﬂj 5 | 22310 | 1.97 10' | 1.9510' | 1.95 10"
s :-22 :84 3'3-:* 10__3 3.27 loj 3.26 104 6 | 6.9810' | 6.1310' | 6.0510' | 6.04 10"
. 8.95 10 8.87 10 8.87 10 7 | 2.12 102 1.85 102 | 1.83 10? 1.82 107
10 | 2.64102 | 24010 | 2.38 102 | 2.38 102 8 | 6.3210% | 54710 | 5.4010% | 5.39 10°
9 | 1.8510° | 1.5010%° | 1.5710° | 1.57310°
10 | 5.3710° | 458 10° | 4.5210° | 4.5110°
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An interesting point evident from Tables 4.2-4.4 is that 7 approaches a
limit as k(A) — oco. Using equation (4.3.10) and taking the limit as k(A4) —

yiclds

L .
lim ry =637 |egy | (1 +8)7
K — h

o j=1
Unfortunately, the ease where the condition number of A is large is not of

iuterest in our application (por in any practical problem since the CR method

would probably converge too slowly).

An immediate consequence of Theorem 4.4 is the special case of a small

perturbation to the identity matrix,
COROLLARY 4.6. The GCR method applied to the perturbed system
(I +E)x =5, (IEIl =1,

yields a sequence of residuals that satisfy the inequalities

” s ” < k‘é‘.

liroll —

Proof. An application of Theorem 4.4 shows that

i

—_—< 7. (4.3.20)
lroll !

Note that k(1) = 1, so that (4.3.20) is reduces to
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”rk“ < 26 klc I l—b_lk—l (ls‘”)
“'_o“ = 2k+|> kk ) . R A

The coeflicient ¢,y in (4.3.21), which is the leading term of the k-th Chebyshev
polynominl 73 (x), is
o = 28 (4.3.22)
Substituting (4.3.22) into (4.3.21) snd using the definition of & == 2¢/);
completes the proof. 0
As we already argued in Chapter 3, the GCR method is really not a
practical algorithm for the types of problems we are interested in. Setting aside
the issue of storage for the moment, the GCR method is not a practical
algorithm because of the large amount of computation needed as the iteration
proceeds. Most of this work is in computing the inner products necessary to
compute the scalars bjm, which are used in the calculation of the new direction.
In some applications, for example in elliptic partial diflerential equations, the
matrix-vector multiply is not too expensive compared to an inner product, so
that as the iteration proceeds it becomes expensive to calculate a new direction.
In our application a matrix-vector multiply is defined by the solution of a
boundary value problem, so that the inner products are cheap compared to the
matrix-vector multiply. Therefore the question of practicality will depend on
the specifie application. For the most part, we have also a limited amount of

storage so that we are forced Lo use one of the truncated or restarted methods.
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The restarted version of the GCR method, GCR(k), is particularly easy to

analyze with the aid of Theorem 4.4,

Recall that the GCR(k) method is the GCR method restarted every
k+1 iterations. By a cycle we mean any set of residuals generated between

any two restarts. For example the j-th cycle is
{riopriay =+ orsanh
Denote the sequence of residuals generated by the GCR(k) method by

{"o(o)”’o(n)’ T Tok+apT 1y Ty b

Notice that
Tie) = fik+r) J=12,---. (4.3.23)

Let
v -1 '
B'=2l_.._’c_+__1_] +.’-',,

where 1, is the error term from Thcorem 4.4, and « is the condition number of

A.

We are now in a position to prove an error bound for the GCR(k) method.
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THEOREM 4.8, The GCR(k) method applied to the perturbed system

(4.3.1) gencrates residuals that satisfy the inequalities

I ”j(l)”

< B B, 1=1- - k+1.
Mool = ' Ea

Proof. By Theorem 4.4 it follows that within any cycle

il < B, (4.3.24)
Il

Now consider the total reduction in the residual

Nriph el gl ‘

= 4.3.25
Trao T oo e (4.3.25)

Using (4.3.23), equation {4.3.25) reduces to

il _ Wil Wrieenll
1 7o)l Hrioll  Hrogll

Repeated application of this procedure yields

el _ Hrimll Hrioggenll  Hrowsnll
o)l et Yool lraoll

An application of Theorem 4.4 to each term

N rinll

Trooll BB,y 1=1,: - k+1

completes the proof. 0
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4.4. Special Distributions of Eigenvalues

In this section we discuss two applications of Theorem 4.4 for matrices with
special distributions of eigenvalues. As in the symmetric case, the error bounds
derived for the GCR method depend on the particular polynomial chosen in
Theorem 4.4. The first case we consider is a matrix with eigenvalues that die in
one of two clusters. The sceond case is that of a matrix with one isolated large
eigenvalue. In both of these cases the theory for the symmelric problem
predicts an error bound which is superior to the error bound predicted for the
general case (sce Axclsson (1084)). The idea in both cases is to choovse a
polynomial, p;(X), with py (0) = 1, that takes into account the special structure
of the spectrum. Using this polynomial, Leinma 4.3 is applied to derive a bound
for the maximum of the matrix polynomial over the spectrum of 4. This bound
is then used in place of the staudard error bound used for the general case in

Theorem 4.4.

Consider the case where the eigenvalues of the matrix A are separated into

two distinct clusters of equal width. Let

MA) € Pasb) U leMl,

where b - A, = X\, - ¢, aund define the polynomial
Por) =T -wh(\ + Xy = N). (4.4.1)
If we add the additional eonstraint thut Py{c) = -Fy (X)), then we can solve for

w so that
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PyZ) =1 -2 (c+),) - cle-D "N + X, - N) (4.4.2)

By analogy to the symmetric case consider the polynomial defined by

r l 201 - Py(N) - (B + a))

1

Py(N) = Z; ° , (1.4.3)
a-p

where a = 1 - P,()\n), and 8 = 1 - P,(b). Notice that P,(0) =

The Chebyshev polynomial T,(z) = z, so that (4.4.3) reduces to

o z >
PyrN)=1- Tt Py(2)). - (4.4.4)
Substituting (4.4.1) into (4.4.4) results in
2"“)(>‘l + Xn) 2w
Po(X) =1 - X A2, 14.4.5
) Bra) " Wta) )

Applying Lemma 4.3 to the matrix polynomial P,(D+¢E) , we obtain the
inequality

[1PoD+eE) - Py(D)|| < elfean] + 2]eo|(HD I + )], (4.4.6)
where ¢;; are the coeflicients of the polynomial Py(\). A straightforward

calculation reduces inequality (4.4.6) Lo

3+ 8)r(A) +1

PyD)|| < ﬂ-{-u L4 (Le Lye - Lct| (147

|| Po{D+eE)

where 8 == 2¢/)\, .
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If we use the GCR(1) method then after every 2 terations the method will

generate a polynomial of degree 2. Therefore, applying Theorem 4.4 with the

bound (4.4.7) yields

“"2” < 1 + & (§+6)I€(A)+l
lroll — [Txlit;;][ f+ o 1+(_;T+_XIT)C—T}XT°2

Using the definition of the Chebyshev polynomial for £ = 1 results in

lroll  a-p & (3 + 8)x(4) + 1
Hroll = B+a  B+a 1+(**T“)°‘ﬁ“2 © (4.4.8)

Remark. In the special case when b = )\,,c = X\, then « = f = 1, and (4.4.8)

reduces to

I rall
ltroll =

—1(3 + &x(A) + 1), (4.4.9)

The second case of interest is the case of an isolated large eigenvalue.

Consider the case where

XE DL U M)
The standard error bound Involves the condition number of A defined by \;/)\,.
If A\, >> b, then this error bound may be a severe overestimate. Cline (1978)
has shown that the eflfect of one isolated large eigenvalue is that of adding one
iteration to a problem with a condition number of &' (4) = b/X,. We show

that the perturbed problem behaves similarly.
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Consider the polynominl

27 — (b + X,)
| 25 2e)

\ W
P) = 'l'— -—] W : (4.4.10)

e ey

We seek to bound the term P,(D+¢E), so as in the proof of Theorem 4.4 first
write
Py(D+eE) = P (D) + [ Py(D+¢E) ~ P (D)]. (4.4.11)

The first term can be bounded by using the standard convergence analysis of
Section 4.2. To obtain a bound for the second term of (4.4.11) substitute

(4.4.10) and rearrange terms to yield

Py(D+¢E) ~ Py (D)

b4, x1 b+X ]
T ‘l Xp-b b

ll _ ___] Ty(D+EE) - Ty (D) ¢E Tia(D+EE) (4.4.12)

where D and & are defined in Section 4.3. Taking norms on both sides of

'

(4.4.12) and noting that |{ 1~ YD- || € 1, we obtain from (4.4.12)
1

[|Pe(D+eE) - Pe(D)]|

(| Tea(D+EE) - Ty (D) Lol Tea(D+EE)f (4.4.13)
T b4+, 2 b4r V|
k-1 ——x"-b] ey
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Here again define 6 = 2¢/X|, and let
Ny = || Tk~|(D+iE) - T,‘,(lh))ll.

Then using the trinngle inequality and properties of the Chebyshev polynomialy

T, (D)) < T D))+ e
T M S T+ ey (4.4.14)
<1+,
Substituting (4.4.14) into (4.4.13) yields the bound
| 5
Py(D+E) - Py(D)]| < at Ut
BAD+E) = PuD)I| < gl + 50+ il
w5

Taking wvorms oun both sides of equation (4.4.11) and using the triangle
inequality yiclds

1

T b+X,
N irvery

I Pu(D+E))| < [+ me) + 50+ ) .

4.16)

which reduces Lo

k-1
& -1 6
2(D+E <2l———-—-] 1+ )+ =(1 + n )] (4407
120+ < 2| YEh] 10+ ma) + 30+ m)), @aan)
where £/ = b/X,.
As in the symmetric case, the error bound depends on the cffective
condition number &' . We also note that the effect of the isoluted large

eigenvalue is that of losing one iteration, if the term y;_y is not too large.

CHAPTER b

Applications nad Numerical Results

This chapter presents sonie numerical results for certain upplications of interest,
The purpose of these nunierical examples is to illustrate some of the important

aspects of Theorem 4.4.

5.1. Numerical Examples for Small Perturbations

Theorem 4.4 states that for sinall nonsymmetric perturbations to symmetric
operators the convergence rate for the GCR(k) method is similar to the
convergence rate for the CR method applied to the symmetric system. We

present several small numerical examples that illustrate this point.

These experiments were run on a Pyramid computer, using double precision

arithmetic. The method was said to converge whenever

“ Tk ” -6
ol =107

In these test cases, the notse level refers to the size of ¢ in the equation
A(€) = A + ¢E. (5.1.1)
Since the matrix A is symmetric positive definite we assumed that it was already

Sl
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diagonalized, so that A = diag(d,d,, - ,d,). The nonsymmetric
perturbations were generated using the random number generator, URAND,
from IMSL. The matrices, E, were computed by generating uniform random
numbers between [-0.5, +0.5 |, and normalizing so that || £ ||, = 1. The noise

level was adjusted by varying e.

The first test case is an application of Corollary 4.5. The matrices in this
test case are all of the form A =1 + ¢E. Corollary 4.5 predicts the error

bound

[EATR

_— < ket

Hroll —

Tables 5.1-5.2 display the number of iterations required for the GCR(k) method
' to converge for two matrices of order 10 and 50. Both of these matrices are

small perturbations of the identity matrix.

Table 5.1
Perturbation to Identity, N = 5.

Number of Iterations

K Noise Level

10% | 10° ] 10!
1 1 2 5
2 1 2 5
3 1 2 4
1 1 2 5
5 1 2 4

53

Table 5.2
Perturbation to Identity, N = 50.

Number of Iterations

K Noize Level
106 1 100 | 107!
1 1 2 5
2 1 2 5
3 1 2 5
4 1 2 5
5 1 2 5

These results show that the convergence rate is predicted quite well by the

theory.

The second set of test cases was chosen to demonstrate the effect of clusters
of eigenvalues on the convergence rate. For the symmetric case it is well known
that the CR method will converge in at most m iterations, where m is the
number of distinct eigenvalues. In fact, the clustering of eigenvalues tends to
improve the convergence rate more than would be expected from the standard
bound given in Secction 3.3. The purpose of this set of tests is to determine if
the nonsymmetries would destroy this clustering effect. A secondary goal is to
determine if there is an optimal number of directions to save depending on the
number of clusters. We ran scveral cnscs, with a varlous number of clusters of
eigenvalues. Tables 5.3-5.5 demonstrate the effect of the noise level on the two
cluster case. Table 5.8 displays the predicted number of iterations using the

theoretical bounds derived in Section 4.4. In the two cluster cases, the matrix A
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was formed so that it had two eigenvalues each with multiplicity n /2, that is
the matrices are of the form

d, = X, 15.‘5%,

=X, (FHDSi<n

Tables 5.7-5.8 present the results for the 3 cluster cases. In the three
cluster case, the matrix A has 3 eigenvalues euch with multiplicity n /3. These

matrices are of the form

d =X, 15.’5%,
d, =% (B+<i<i
R A

(-2:-;i+1) <i<n

Table 5.3
‘Two Clusters at A, = .1\ = 1.0,; N = 50.

Number of lterations
K Noise Level
100 | 103 | 10!
0 6 7 60
1 3 3] 22
2 3 5 26

Tuble 5.4
Two Clusters at A, = .01,A\; = 1.0.,; N = 50.

Number of lterations
k Noise Level
10¢ 1w 1!
0ol 4 we [ 34
1| 3 8 | g7
2 | 3 8 | 56

! GCR stalled out (stepsize too small).

Table 5.5
Two Clusters at A, = .001,A;, = 1.0.; N = 50.

Number of lterations

" Noise Level
10 100° | 107!
0 9 8577 | 35
1 4 16 | 217
2 3 16 | 32!

' GCR stalled out (stepsize too small).

Section 4.4 discussed the case where the eigenvalues were contained in two
distinct clusters. For the special case where the matrix has only two eigenvalues

the analysis predicts the error bound

Hrall < -%((3+6)~(A)+ 1), (5.1.2)

roll —

2¢ . . . . .
wlhere b = N Using this error bound, the number of iterations required to
1

reduce the norm of the residual by 107% may be computed. If we denote by p the
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minimum number of iterations to reduce the norm of the residual by 1075, then
log(107%)

log -f-((a + 6K(A) + 1)]

p=2

These values are tabulated in Table 5.8. For eertain combinations of the
condition number and the normalized error the bound in equation (5.1.2) is
greater than 1, so that the predicted number of iterations is meaningless; these
values. are not displayed. Overall though the predicted number of iterations

match very well against the actual number of iterations taken.

Table 5.6
Predicted Number of Iterations for the 2 Cluster Cases.

Number of Iterations

Condition Number Noise Level
106 | 10 | 10!
10 4 7
100 4 15
1000 5
Table 5.7

Three Clusters at a=0.1, b=0.5, ¢c=1.0; N = 0,

Number of Iterations
k Noise Level
10 | 10° | 107!
1 11 11 20
2 4 7 20
3 4 7 20
5 4 [ 20
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Table 5.8
Three Clusters at a=0.1, b=0.5, ¢=1.0; N = 30.

Number of Iterations
k Noise Level
10° | 109 | 107!
1 11 11 30
2 4 7 25
3 4 7 24
5 4 7 23

These numerical experiments demonstrate that the GCR(k) method applied
to the perturbed problem behaves very much like CR applied to the symmetric
problem. In addition these test cases point out that the convergence rate of the
GCR(k) method does not improve by saving more directions than is necessary to
build up a k-th degree polynomial, where k is the number of clusters. For
example, the GCR(1) method builds a quadratic polynomial, so that for the two

cluster case saving 1 direction is sufficient.

In the third test case, the eigenvalues of the matrix A are uniformiy
distributed in the interval [\,,)\;]. This purpose of this test case is to determine
the effect of the number of saved directions on the convergence rate. Tables
5.9-5.11 illustrate the effect on the convergence rate for various numbers of

saved directions and condition numbers.
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Table 5.9
Evenly Spaced Eigenvalues € {1.0,10.0}; N=10.

Number of lierations

X Noise Level
108 108 107!
1 30 30 30

2 27 27 27
3 23 23 23
4 19 10 19
5 21 21 21

Nuinber of iterations for CR on symmetric problem = 10.

Table 5.10
Evenly Spaced Eigenvalues € [1.0,10.0;; N=50.

Number of lterations
k Noise Level
10° | 103 ] 10!

1 31 31 31
2 26 26 26
3 24 24 24
4 23 23 23
5 22 22 22
10 21 21 21

Number of iterations for CR on symmetric problem = 20.
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Table 5.11
Evenly Spaced Eigenvalues € [1.0,100.0]; N==50.

Number of Iterations

K Noise Level
10°8 10° | 107!
1| 208 203 201
2| 143 143 143
31 114 114 113
4 97 97 97
5 85 85 86
10 67 67 66

Nuinber of iterations for CR on symmetric problem = 34,

The number of iterations required for the CR method to converge on the
symmetric problem is also given for comparison. These results can also be
compared with the predicted number of iterations for the symmetric case. Using
the standard Chebyshev bound {(see Section 4.2), the predicted number of
iterations to reduce the initial norm of the residusl by 107 is 23 for a matrix

with a x(A4 ) = 10, and 73 for a matrix with a k(4 ) = 100.

In these test cases the noise level does not aflect the convergence behavior
of the GCR(k) method. This phenomenon can be explained as follows. The
unperturbed matrix A bas all simple eigenvalues. In this case, the eigenvalues
and eigenvectors of A are both continuous functions of the perturbation (see
Wilkinson (1965)). Furthermore, the noise level is small enough that the
perturbed matrix also has all simple eigenvalues. Therefore, the matrix A (¢) has

a complete set of eigenvectors. Applying Theorem 3.2, we obtain the bound
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rillz < "(T),_'“é';. xrg%)lqi(k)l'llro Il2: (5.1.3)

where T is the matrix whose columns are the eigenvectors of A. The matrix T
is a perturbation of an orthogonal matrix since A is symmetric, which implies
that T is probably well conditioned. Therefore, as long as the noise level is not
larger than half the separation distance between eigenvalues, the matrix T
should remain well-conditioned, which implies that the bound in (5.1.3) should

not change by much.

The fourth test case investigates the effect of an isolated large eigenvalue
on the convergence rate. In the case of an isolated large eigenvalue the
condition number of the linear system may predict a convergence rate much
larger than the one observed. As Cline (1976) has shown, the convergence rate
really depends on the effective condition number, that is the condition number
of the matrix if the large isolated eigenvalue were removed. The purpose of this
test case is to find out if this property is preserved for the>case of a small
nonsymmectric perturbation, In this test case the matrix A has n-1 uniformly
distributed eigenvalues in [1,10], and 1 eigenvalue at 100. Thus the condition
number of A is equal to 100, but the eflective condition number is equal to 10.
Tables 5.12 shows that the Isolated large ecigenvalue does slow down the
convergence rate, but only as expected from the analysis for the symmetric case,
Comparing Tables 5.10-5.12 we see that the test ense with the isolated large

eigenvalue (Table 5.12) is converging at almost the same rate as the test case

[
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with a condition number == 10 (Table 5.10). This effect is even more pronounced
as the number of saved directions increases.

Table 5.12
One Isolated Large Eigenvalue at A = 100; N = 50.

Number of Iterations

Kk Noise Level
109 | 10° | 107!
1 50 50 55
2] 35 35 11
3] o8 24 30
4! 25 27 28
5| 23 24 24
10} 21 21 21

The last test cases use a small variation of Jordan blocks. In these test
Vs

cases the matrix A is formed by setting the diagonal elements equal to 1, and

the superdiagonal elements equal to a, that is,

(=2 o
> Q
N ©
oo

[=]
[~}
o -
> R

This is an extreme case of a nonsymmetric matrix In the scnse that it has
exactly 1 eigenvector regardless of the size of the matrix. Table 5.13 records the
results for the test cases where a == 0.1, and o == 0.5. These test matrices

produce results very similar to test case 1, where we had small perturbations to
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the identity matrix.

Table 5.13 .
Number of Jterations to Converge versus a; N==10.

Number of lterations
k o
0.1 0.5

1 6 15
2 [i] 14

3 6 14

4 8 13

S 6 13
10 6 10

Table 5.14 displays the results for & = 1, and various dimensions. The last
row of this table displays the number of ilerations necessary to converge using
the standard CR algorithm, which in this case is equivalent to Orthomiu(l).
These result verify that taking more directions does not necessarily improve the
convergence rate. Another point to notice is that the convergence rate does not

improve substantially until we use the GCR(n) method.
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Table 6.14
Number of Iterations Lo Converge for a = 1, Jordun Blocks.
Number of fterations

K N
5 10 20 50
1 26 f 41 | 63 | 119
2 29 40 67 126
3 33 | 58 | 71 133
4 5150 | 76 | 135
S S5 54 75 146
10 - 10 81 154
CR 26 4] 66 140

in Table 5.15, we tabulale various properties of the test matrices which can

be used to predict the rate of convergence.

Table 5.15
Spectral Properties of Jordan Blocks.

a {N JHAN | ~(A) | IIR) LS

0.1 | 10 | 1.096 1.21 0.006 0.18
0.1 50 | 1.100 1.22 0.100 | 0.18
0.5 | 10 | 1.480 2.84 0.480 { 0.64
0.5 | 50 | 1.499 2.09 0.499 0.67
1.0 5 | 1.866 13.03 0.866 0.02
1.0 |1 10 | 1.960 48.37 0.960 | 0.92
1.0 { 20 | 1.989 178.1 0.989 1.00
1.0 | 50 | 2.0 1054 1.000 1.00

Here 6 is the normalized error given by 2[R |} / [{A |-

Notice that for the cases with a = .1, the condition number of the

symmetric part of A is close to 1, which implics that the GCR(K) method
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applied to this test case should behave similarly to the test cases where the
GCR(k) method was applied to small perturbations of the identity matrix. For
the cases with a = 0.5, the bounds in TaBles 4.2-4.6 predict that GCR(2) is
probably optimal, since the error bounds B, achieve a minimum for k=2.
Unfortunately the cases with a = 1.0 yield error bounds greater than 1.0, so

that we cannot use Tables 4.2-4.6 to predict a convergence rate.

CHAPTER 6

Conclusions

In this study we analyze the behavior of conjugate residual methods for
almost symmetric linear systems., The conjugate residual method, which is a
popular method for the solution of symmetric positive definite systems is
presented and shown to have a convergence rate which depends on the \/m
We also present the GCR methods, proposed by Eisenstat, Elman, and Schultz.
Their convergence rate for the. GCR methods depends on the x(A), and is
similar to the steepest descent bound. The main result of this study is a new.
convergence theorem for the application of the GCR methods to almost
symmetric linear systems, This theorem shows that the GCR methods havg a
convergence rate for the perturbed problem which is a small perturbation of the
convergence rate for the CR method applied to the unperturbed problem. We
also give several applications for special distributions of eigenvalues, which show
that the GCR methods on the perturbed problem behave similarly to the CR
method on the symmetric problem. In addition, some of the analysis indicates
that the clustering of the eigenvalues determines how many previous directions

to save in the GCR(k) methods.
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There are stll some questions left unanswered. The analysis used in this
study is a perturbational analysis, and like most analyses of this type it works
best for small perturbations. We remark that for large perturbations the error
bounds predicted by the theory are meaningless. There is still a question of
whether the error bounds derived in this study can be sharpened for large
perturbations.  Another interesting question relates to roundoff crror. Since
roundoff error may be considered a small nonsymmetric perturbation to a
symmetric operator, it may be possible to apply this work to develop a roundoff

error analysis for the conjugate gradient methods.

BIBLIOGRAPHY

Arnoldi, W.E. [1051]. The principle of minimized iteration in the solution of the
matrix eigenvalue problem. Quart. Appl. Math., 8:17-22.

Axcisson, O. [1879]. A generulized conjugate direction method snd its
spplication on a singular perturbation problein. Proceedings of 8th
Biennial Numerical Analysss Conference held al Dundee, Scotland, June
26-29, 1979. Reproduced in Lecture Notes in Mathematics No. 773, pp.
1-12, Springer- Verlag 1980.

Axelsson, O. {1980]. Conjugnte gradient Lype methods for unsymmetric and
inconsistent systems of linear equations. Linear Alg. Appl, 29:1-16.

Axelsson, O. and Barker, V.A. [1984]. Finite Element Solution of Boundary
Value Problems. Academic Press, Orlando, Florida.

Broyden, C.G. [1965]). A class of methods for solving nonlinear simultaneous
equations. Math. Comp., 19:577-598.

Chandra, R. [1078]. Conjugate Gradient Methods for Partial Differential
Equations. Dactoral Dissertalion, Deparlment of Compuler Science, Yale
University. Also available as Research Report No. 129.

Cline, A.K. [1976). Several observations on the use of conjugate gradient
methods. [ICASE Report 76-22. NASA Langley Research Center,
Hampton, Virginia.

Coucus, PP. and Golub, G.l. [1976]. A generalized conjugale gradient method
for nousymmetric systems of linear equations. Technical Report STAN-
CS-76-585, Department of Computer Science, Stanford Universsty.

Danicl, J.W. [1067]. The conjugate gradient method for linear and nonlinear
operator equations. SIAM J. Numer. Anal., {:10-26.

Dennis, J.E. Jr., [1984]. Private communication.

67



68
Duff, I.S. [1977]. A survey of sparse matrix research. Proc. IJEEE, 65:500-585.

Eisenstat, S.C. [1082]. A note on the generalized conjugate gradient method.
Technical Report No. 228, Department of Computer Science, Yale
University.

Eisenstat, S.C., Elman, 11.C., and Schultz, M.H. [1983]. Variational iterative
methods for nonsymmetric systems of linear equations. SIAM J. Numer.
Anal., £0:845-857.

Elman, H.C. {1082]. Iterative Methods for Large Sparse Nonsymmetric Systems
of Linear Equations. Doctoral Dissertation, Department of Computer
Science, Yale University. Also available as Research Report No. 2290.

Engeli, M., Ginsburg, T., Rutishauser, H. and Stiefel, E. [1050]. Refined
iterative methods for computation of the solution and the eigenvalues of
self-adjoint boundary value problems. Mitleslungen aus dem Institut fir
angewandte Mathematsk, Birkhduser Verlag, Basel, Stullgart.

Fox, L. and Parker 1.B. [1008]. Chebyshev Polynomials in Numerical Analysis.
Oxford University Press, London.

Gay, DM. [1970]. Some convergence properties of Broyden’s method. SIAM J.
Numer. Anal., 16:628-680.

Greenbaum, A. [1981]). Behavior of the conjugate gradient algorithm in finite
precision arithmetic. Report UCRL 85752, Lawrence Livermore
Laboratory, Livermore, California.

Hestenes, M.R. and Stiefel, E. [1052]. Method of conjugate gradients for solving
linear systems. J. Res. Nal. Bureau Standards, {9:409-486.

Jea, K.C. [1982]. Generalized Conjugate Gradient Acceleration of Iterative
Methods. Doctoral Dissertation, Department of Mathematics, Unsversity
of Tezas.

Jennings, A. [1977). Influence of the eigenvalue spectrum on the convergence
rate of the conjugate gradient method. J. Inst. Math. Appl., 20:61-72.

Kato, T. [1082]. A Short Introduction to Perturbation Theory for Linear
Operators. Springer Verlag, New York.

60

Lanczos, C. [1050]. An iteration method for the solution of the eigenvalue
problem of linear differential and integral operators. J. Res. Nat. Bureau
Standards, {5.255-282.

Lanczos, C. [1061]. Applied 4nalysis. Prentice Hall, Englewood Cliffs, New
Jersey.

Luenberger, D.G. [1073]. Introduction to Linear and Nonlincar Programming.
Addison-Wesley, Reading, Massachusetts.

Manteuffel, T.A. [1977]. The Tchebyshev iteration for nonsymmetric linear
systems. Numer. Math., £8:807-327.

Manteuflel, T.A. [1978]. Adaptive procedure for estimating parameters for the
nonsymmetric Tchebychev iteration. Numer. Math., 81:188-208.

Paige, C.C. [1972]. Computational variants of the Lanczos method for the
eigenproblem. J. Inst. Math. Appl., 10:873-381.

Paige, C.C. [1976]. Error analysis of the Lanczos algorithm for tridiagonalizing
a symmetric matrix. J. Inst. Math. Appl., 18:8{1-849.

Paige, C.C. [1080]. Accuracy and effectiveness of the Lanczos algorithm for the
symmetric eigenproblem. Linear Alg. Appl., 84:285-258.

Paige, C.C. and Saunders, M.A. [19875]. Solution of sparse indefinite systems of
equations and least squares problems. SIAM J. Numer. Anal, 12:617-
629.

Paige, C.C. and Saunders, M.A. [1982]. LSQR: An algorithm for sparse lincar
equations and sparse least squares. ACM Trans. Math. Soft., 8:{3-71.

Saad, Y. {1980}. Variations on Arnoldi's method for computing eigenelements of
large unsymmetric matrices. Linear Alg. Appl.,, 84:269-£95.

Saad, Y. [1981]. Krylov subspace methods for solving large unsymmetric linear
systems. Math. Comp., 87:105-126.

Saad, Y. [1982]. The Lanczos biorthogonalization algorithm and other oblique
projection methods for solving large unsymmetric systems. SIAM J.
Numer. Anal, 19:{85-506.



70

Saad, Y. [1983]. GMRES: A generalized minimal residual algorithm for solving
nonsymetric linenr systems. Technical Report No. 254, Department of
Computer Science, Yale Universily.

Saad, Y. and Schultz, M.H. {1085]. Conjugate gradient-like slgorithms for
solving nonsyminetric linear systems. Math. Comp., {4 {17-{24.

Stewart, G.W. [1975]. The convergence of the method of conjugate gradients at
isolated extreme points in the spectrum. Numer. Math., £4:85-93.

Stiefel, E. {10855|. Relaxationmethoden bester Strategie zur Losung linearer
Gleichungssystems. Comm. Math. Helv.,, 29:157-179.

Symes, W.W,, |1082]. Computational continuation for solutions of wave
equations. Unpublished manuscriptl.

Symes, W.W,, {1085]. Stability properties for the velocity inversion problem.
To appear in Proc. of the SEG/SIAM|SPE Symposium, Houston, Teras,
January 1985,

Vinsome, P.K.W. [1076]. ORTHOMIN - An iterative method for solving sparse
sets of simultaneous linear equations. Proc. Fourth SPE Symposium on
Reservoir Simulation, Los Angeles, pp. 149-160. )

Widlund, O. {1878]. A Lanczos method for a class of nonsymmetric systems of
linear equations. SIAM J. Numer. Anal, 15:801-812.

Wilkinson, J.H. [1665]. The Algebraic Eigenvalue Problem. Oxford University
Press, London.

Wozniakowski, H. [1880). Roundofl error analysis of a new class of conjugate
gradicnt algorithms. Lin. Alg. Appl., £9:507-529.

Young, D.M. and Jea, K.C. {1980]. Generalized conjugate-gradient acceleration
of non-symmetrizable iterative methods. Linear Alg. Appl, 34:159-194.



