AN ALMOST LINEAR-TIME ALGORITHM
FOR GRAPH REALIZATION

Robert E. Bixby

Donald K. Wagner

\footnote{Mathematical Sciences Department, Rice University, Houston, Texas 77251. Research partially supported by NSF Grant MCS81-05227 and AFOSR Grant AFOSR82-0004 at Northwestern University, and by the Alexander von Humboldt Foundation and the Institut für Ökonometrie und Operations Research der Universität Bonn, Federal Republic of Germany, while the author was on leave from Rice University.}

\footnote{School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47907. Research partially supported by NSF Grant MCS81-05327 and AFOSR Grant AFOSR82-0004 at Northwestern University, and by NSF Grant ECS-8307796 at Purdue University.}
An Almost Linear-Time Algorithm for Graph Realization

Robert E. Bixby and Donald K. Wagner

Abstract

Given a \((0,1)\)-matrix \(M\), the graph-realization problem for \(M\) is to find a tree such that the columns of \(M\) are incidence vectors of paths in \(T\), or to show that no such \(T\) exists. An algorithm is presented for this problem the time complexity of which is very nearly linear in the number of ones in \(M\).
1. INTRODUCTION

The purpose of this paper is to describe an efficient algorithm for graph realization. Our motivation is the applicability of such an algorithm to finding network structure in linear programs (see [2,11]). Graph realization also provides a generalization of planarity testing.

Fujishige [7] has independently given an algorithm with essentially the same time bound as that given here. However, many of the details in [7] are left to the reader making it difficult to understand and verify the algorithm. The algorithm in [7] and the one given here are similar in that they both are based on an exponential-time procedure proposed in [13]. Fujishige makes this procedure polynomial by employing the PQ-tree data structure of [4]. The algorithm given here does not use any such special data structure, using instead a graph-decomposition.

There are several equivalent definitions of the graph-realization problem. The simplest is: Given a \(\{0, 1\}\)-matrix \(M\), determine if a tree \(T\) exists such that the columns of \(M\) are incidence vectors of paths of \(T\), and if so find such a tree. (Note: It is not necessary that all paths of \(T\) occur as columns in \(M\), only that all columns of \(M\) occur as paths in \(T\).) If \(T\) exists, \(M\) is called graphic.

The first polynomial-time algorithm for graph realization was given by Tutte [19]. Other polynomial algorithms are given in [2,5,7,9,11,14,16,18,20]. Our algorithm and the algorithm in [7] have the property that for an \(M\) that is not "entirely graphic," a maximal subset of "graphic columns" is produced. This property is important in the application to linear programming.

The remainder of the paper is arranged as follows. Section 2 supplies several definitions. In section 3, Löfgren's procedure is given along with an informal discussion of how to make it polynomial. In sections 4 and 5 the main subroutines are developed in detail -- TYPING, HYPO-PATH and UPDATE. In section 6 the main algorithm GRAPH is stated. Section 7 contains the derivation of the complexity of the algorithm. Finally, an example is given in the Appendix.

1The paper is based on the Ph.D. dissertation [22] of the second author. An outline of the main algorithm has also recently been given in [1].

2Preliminary results of the current paper were presented at the April 30-May 2, 1979 TIMS/ORSA national meeting.
2. DEFINITIONS

We assume a basic knowledge of graph theory. See [3] for an introduction.

Let $G = (N, E)$ be a graph with node-set N and edge-set E. An edge with identical ends is a loop, and two non-loop edges with the same ends are parallel. Let A be a set with $A \subseteq E$. The edge-induced subgraph $G[A]$ is the subgraph with edge-set A and node-set consisting of those nodes meeting A. $G \setminus A$ is the spanning subgraph obtained by deleting the edges of A. A path is a "simple path" (one without repeated nodes), and a cycle is a "simple closed path." We identify paths and cycles with their underlying edge-sets. A polygon is a connected graph the edge-set of which is a cycle with at least three edges. A connected, loopless graph on two nodes is a bond.

Let $T = (N, A)$ be a directed graph (digraph) with arc-set $A = \mathcal{A}(T)$. T is an arborescence if its underlying graph is a tree, every node except one has indegree one, and the one special node, denoted $\text{root}(T)$, has indegree zero. Let u and v be the tail and head, respectively, of some arc of T. Then u is the parent of v and v a child of u. Note that every node u, except $\text{root}(T)$, has a unique parent, denoted here by $p(u)$.

Let $G = (N, E)$ be a connected graph with spanning tree T. Then for each edge $e \in E - T$ the graph $G[T \cup \{e\}]$ contains a unique cycle, denoted $C(T, e)$, the fundamental cycle of T determined by e. Define a $\{0, 1\}$-matrix M as follows. Index the columns of M on $E - T$, the rows of M on T and define $m_{j,k}$, the (j,k)-entry of M, by

$$m_{j,k} = \begin{cases} 1 & \text{if } j \in C(T, k) \\ 0 & \text{otherwise} \end{cases}.$$

M is a fundamental matrix of G with respect to T.

Given a $\{0, 1\}$-matrix M, the graph-realization problem is to determine a connected graph G, if one exists, such that M is a fundamental matrix for G. M is then said to be graphic and G is a realization of M. This definition is equivalent to the one in the Introduction. For any $\{0, 1\}$-matrix M, graphic or not, the set of row indices corresponding to nonzeros in column k together with the column index k will be denoted by C_k and be referred to as a "fundamental cycle" of M.
Let $G = (N, E)$ be a connected graph, and let $\{E_1, E_2\}$ be a partition of E. Then, for $k > 0$, $\{E_1, E_2\}$ is a k-separation of G if

$$|E_1| \geq k \leq |E_2|$$

$$|N(G[E_1]) \cap N(G[E_2])| = k$$

For n a positive integer, G is n-connected if it has no k-separation for $k < n$. Graphs having a 1-separation are separable; 2-connected graphs are nonseparable.

Let $\{E_1, E_2\}$ be a 2-separation of a nonseparable graph G. Let $N(G[E_1]) \cap N(G[E_2]) = \{u, v\}$. Define G' to be the graph obtained by interchanging in $G[E_1]$ the incidences of the nodes u and v. Then G' is said to be obtained from G by reversing $G[E_1]$. In general, G'' is 2-isomorphic to G if G'' is obtainable from G by a sequence of subgraph reversals.

A parallel class of a graph G is a maximal set of edges B such that $G[B]$ is a bond. “The” simplification of G is the graph obtained by deleting all loops and all but one edge in each parallel class. If G is not a polygon or bond and its simplification is 3-connected, then it is prime.

The following important theorem is due to Whitney [24].

(2.1) Theorem. Let G and G' be nonseparable graphs on the same edge-set. Then G and G' are 2-isomorphic if and only if they have the same cycles.

For a short proof of Theorem 2.1, see [17] or [23].

3. AN OUTLINE OF THE ALGORITHM

Let M be an $r \times c$ $\{0,1\}$-matrix. Assume M has no row or column consisting of zeros only, and let R and C be its sets of row and column indices, respectively. Define a graph H with node-set $R \cup C$ and an edge for each nonzero of M. The submatrices corresponding to the connected components of H are called the blocks of M, and M is said to be nonseparable if it has just one block. The following result is well known.
(3.1) **Theorem.** M is graphic if and only if each block of M is graphic; moreover, if M is non-separable and graphic with realization G, then G is nonseparable.

Linear-time algorithms to find the blocks of M, linear in the number of nonzeros, are easy to describe (e.g., see [2]).

Let M_k denote the matrix made up of the first k columns of M, where rows consisting entirely of zeros have been deleted. M is called *totally nonseparable* if M_k is nonseparable for $1 \leq k \leq c$. For any nonseparable matrix it is easy to compute a permutation of the columns such that the resulting matrix is totally nonseparable. For example, virtually any algorithm for computing the components of H, above, will so order the columns.

In view of the above remarks we assume henceforth that M is totally nonseparable. We also assume, for purely technical reasons, that the first column of M is a singleton (see the first paragraph of section 4).

Where C_k is the fundamental cycle of column k of M, define $P_k = C_k \bigcap \left\{ \bigcup_{j<k} C_j \right\}$. A set of edges P of a graph G is a hypopath of G if P is a path in some graph 2-isomorphic to G. The following statement, provable directly from Theorem 2.1, is Löfgren’s “subrearrangement theorem” [13].

(3.2) **Theorem.** Let M be a totally nonseparable $\{0, 1\}$-matrix with c columns. Assume for some $1 \leq k < c$ that M_k is graphic with realization G_k. Then M_{k+1} is graphic if and only if P_{k+1} is a hypopath of G_k.

Based on Theorem 3.2, Löfgren suggested the following procedure for testing whether M is graphic. Clearly M_1 is graphic. Suppose there exists a graph G_k that realizes M_k. Further, suppose P_{k+1} is a hypopath of G_k. Then there exists a graph G_k', 2-isomorphic to G_k such that P_{k+1} is a path in G_k'. Add the edges of $G_{k+1} - P_{k+1}$ to G_k' so that they form a path between the ends of P_{k+1} but are not incident to any other nodes of G_k'. It is straightforward to verify that the
resulting graph G_{k+1} is a realization of M_{k+1}. If the above procedure breaks down at any point, it follows that M is not graphic.

To implement Löfgren's idea requires a polynomial-time method for constructing G_k' from G_k. A natural approach is to invoke some representation of G_k that "displays" all graphs 2-isomorphic to G_k. For this representation we use a graph decomposition, called here t-decomposition. This notion of decomposition is a small variation on a theory developed by Tutte [21, Chapter 11]. The data structures needed to represent a t-decomposition are elementary.

The remainder of the section is devoted to describing an example decomposition and illustrating pictorially how it can be used to implement the above procedure.

A careful definition of t-decomposition will be given in the next section. For now we define a t-decomposition as an arborescence whose nodes are graphs. Two nodes, that is graphs, are adjacent if they have an edge in common, called a "marker" edge. It is assumed that each graph is a bond, polygon or prime. An example t-decomposition is shown in Figure 1a. The arrows between graphs indicate the pairings of the marker edges. The root is G_1. The marker edges themselves are indicated by oriented dashed lines.

Figure 1a: A t-decomposition
We associate with each t-decomposition a "merged" graph obtained by identifying the common marker edges and then erasing them. The merged graph for the graph in Figure 1a graph is shown in Figure 1b. The orientations on the marker edges specify the orientations in which they are identified.

Let \(G \) be the graph in Figure 1b and let \(P = \{a, b, c, d, e, f, g\} \). \(P \) plays the role of \(P_{k+1} \) in the Løfgren procedure. Each edge of \(P \) lies in one of the graphs of the t-decomposition \(D \) in Figure 1a. Consider the t-decomposition \(D' \) in Figure 2a.
D' is obtained from D by "reorienting" G_1 with respect to G_2 (that is, by reorientation of its marker edge), "relinking" the polygon G_6 (that is, by reordering its edges) and reorienting G_8 with respect to G_8. The result is that the merged graph G' of D' is as given in Figure 2b and has the property that P is a path. Thus, P is a hypopath of G. An algorithm HYPOPATH for carrying out the above kinds of operations -- marker reorientations and polygon relinkings -- is the subject of section 4.

![Figure 2b: The merged graph for Figure 2a](image)

The final step in an efficient implementation using t-decompositions is to give an update procedure. (A polynomial-time but inefficient alternative would be to recompute the decomposition from scratch [10].) Thus, suppose h is an edge not in G', and that h is added to G' forming a cycle with P. We must construct the t-decomposition for the new graph. It is given in Figure 2c. It was obtained by merging G_1, G_2, G_3, G_5', G_8, G_8 and G_9, in the process of which the piece G_6'' was "squeezed" off. Section 5 describes the general procedure for this update, the algorithm UPDATE.

![Figure 2c: Updated t-decomposition](image)
4. THE HYPOPATH PROBLEM

We begin by describing a graph decomposition. Let \(D \) be a finite collection of nonseparable graphs, and let \(T \) be a digraph having node-set \(D \) and two nodes joined by an arc if these nodes have some common edge. The collection \(D \) is a decomposition if \(T \) is an arborescence and any two members of \(D \) have at most one edge and no nodes in common. If \(H,K \in D \) and \(\{e\} = E(H) \cap E(K) \), then \(e \) is a marker edge of \(H \) and \(K \). If \(K = p(H) \) (recall \(p(\cdot) \) denotes “parent of”), then \(e \) is a child marker of \(K \) and the parent marker of \(H \), in this latter capacity denoted \(pm(H) \). We assume that \(root(D) = root(T) \) is chosen to have at least one edge not in any other node. Picking one such edge arbitrarily, say \(m \), we define \(pm(root(D)) = m \). In our algorithm we always chose as \(m \) the edge corresponding to the first, by assumption singleton, column of \(M \). This choice guarantees that \(m \) is never in “\(P \)” (see the definition of the hypopath problem) and that \(root(D) \) is always a bond given that \(D \) is a “\(t \)-decomposition,” and thus simplifies the statement of (R5) in section 5.

Let \(e = pm(H) \) have ends \(u_1 \) and \(u_2 \) in \(H_1 \) and \(v_1 \) and \(v_2 \) in \(K = p(H) \) (so, \(H \neq root(D) \)). An orientation of \(H \) with respect to \(K \) is a bijection \(f : \{u_1, u_2\} \rightarrow \{v_1, v_2\} \). Given \(f \), \(H \) is said to be oriented with respect to \(K \). To reorient \(H \) is to change \(f \). The decomposition \(D \) is oriented if every child member is oriented with respect to its parent. The collection of these orientations is referred to as the orientation of \(D \).

An oriented decomposition \(D \) is a \(t \)-decomposition if (i) every member of \(D \) has at least three edges and is a polygon, bond or prime; (ii) only bond members of \(D \) have edges parallel to their parent marker; and (iii) no two polygons or bonds have a marker edge in common.

To relink a polygon member of \(D \) is to reorder its edges, thus producing a 2-isomorphic copy.

Corresponding to the above decomposition there is a composition. Let \(D \) be an oriented decomposition with \(H,K \in D, K = p(H), \) and \(e = pm(H) \). Let \(e \) have ends \(u_1 \) and \(u_2 \) in \(H \). To merge \(H \) with \(K \) is to delete \(e \) from both graphs and identify \(u_i \) with \(f(u_i) \) \((i = 1,2) \), where \(f \) is the orientation of \(H \) with respect to \(K \). The resulting graph is denoted \(m_f(H,K) \), or simply...
$m(H,K)$. Note that $m(H,K)$ is uniquely determined up to the names of the nodes being identified.

Replacing, in D, the graphs H and K with $m(H,K)$ yields a new decomposition D' having one fewer member, where the orientation of D induces an orientation of D'. Repeating this process an additional $|D| - 2$ times yields a single graph denoted $m(D)$. It is straightforward to verify that $m(D)$ does not depend on the order in which the members of D are merged. The graph $m(D)$ is the merged graph of D.

Let $D = \{Q, H_1, \ldots, H_t\}$ be an oriented decomposition with $Q = p(H_i) \ (1 \leq i \leq t)$. Let f_1, \ldots, f_t be the orientations of H_1, \ldots, H_t respectively. Then $Q_f[H_1, \ldots, H_t]$ denotes $m(D)$, where f refers to f_1, \ldots, f_t.

(4.1) Theorem. Let G and G' be 2-isomorphic nonseparable graphs and let $G = Q_f[H_1, \ldots, H_t]$. Assume that Q has at least 3 edges, is a polygon, bond, or prime, and that if Q is a polygon, then for each H_i, $H_i \setminus \{pm(H_i)\}$ is nonseparable. Then there exist graphs Q', H_1', \ldots, H_t' and an orientation f' such that Q is 2-isomorphic to Q', H_i is 2-isomorphic to $H_i' \ (1 \leq i \leq t)$ and $G' = Q'_f[H_1', \ldots, H_t']$. Further, if Q is not a polygon, then $Q' = Q$.

Proof. This may be deduced from Theorem 2.1 and results in [6]. In particular, we may replace Q and each of the $H_i \ (1 \leq i \leq t)$ by its “standard” decomposition in the sense of [6]. Now, the condition that when Q is a polygon, each $H_i \setminus \{pm(H_i)\}$ is nonseparable, implies that these decompositions taken together form a “standard” decomposition D of G except for some possible adjacent bonds. But it is easy to see that merging these bonds does not affect the class of graphs obtainable as the merged graph by first reorienting D and then merging. On the other hand, because G and G' have the same cycles, it follows from the uniqueness result Theorem 18 of [6] that merging the adjacent bonds in D does yield a “standard” decomposition of G'. The theorem now follows by applying Theorem 2.1 and using the easy fact that any 2-isomorphism of a graph can be carried out as a 2-isomorphism on the simplification followed by the reinsertion of the deleted edges.
Let $P \subseteq E(m(D))$. We consider the following hypopath problem: Given a t-decomposition D and a set $P \subseteq E(m(D))$, find a t-decomposition D', if one exists, such that $m(D')$ is 2-isomorphic to $m(D)$ and P is a path of $m(D')$.

Define \hat{D}, the reduced t-decomposition of D with respect to P, to be the minimal decomposition contained in D and containing all members of D that have an edge of P. Clearly, P is a hypopath of $m(D)$ if and only if P is a hypopath of $m(\hat{D})$. Note that the arborescence structure of the original t-decomposition D induces an arborescence structure on \hat{D}, but it need not be the case that $\text{root}(\hat{D}) = \text{root}(D)$.

The following classification scheme is crucial to our method. Let H be a graph, m a distinguished edge (m is typically a parent marker) and $\varphi \neq X \subseteq E(H)-\{m\}$. Consider the following mutually exclusive arrangements for (H,X,m):

1. $X \cup \{m\}$ is a cycle;
2. X is a path with m incident to one end-node and one internal node;
3. $X \cup \{m\}$ is a path with m an end-edge;
4. $X \cup \{m\}$ is a path with m not an end-edge.

If (H,X,m) satisfies (i), set $A(H,X,m) = i$; otherwise set $A(H,X,m) = 5$. Define the type of (H,X,m) by $T(H,X,m) = \min\{A(H',X,m) : H'$ is 2-isomorphic to $H\}$. (H,X,m) is good if $A(H,X,m) = T(H,X,m) < 5$.

(4.2) **Lemma.** If $T(H,X,m) = i$, then $A(H,X,m) \geq i$. If $T(H,X,m) = 1$, then $A(H,X,m) = 1$. If $T(H,X,m) = 2$, then $A(H,X,m) = 2$ or 5.

Proof. The result follows easily from the definition and the easy part of Theorem 2.1.

For the remainder of this section the following notation is used. \hat{D} is the reduced t-decomposition of D with respect to P, and $Q \in \hat{D}$ is fixed. Each child of Q is the root of a unique maximal t-decomposition contained in \hat{D}. Let S_1, \ldots, S_t be these t-decompositions and let $H_i = m(S_i)$ ($1 \leq i \leq t$). H_1, \ldots, H_t are the complete children of Q. Let $m = pm(Q)$ and define
$H = Q_f[H_1, \ldots, H_t]$ where f is the orientation induced by D. Define $m_i = pm(H_i)$ ($1 \leq i \leq t$), $X = P \cap E(H)$ and $W_Q = (P \cap E(Q)) \cup \{m_1, \ldots, m_t\}$. Note that if Q is a polygon, then $H_i \setminus \{m_i\}$ ($1 \leq i \leq t$) is nonseparable because $\text{root}(S_i)$ cannot be a polygon. Hence, Theorem 4.1 applies.

Suppose F is a t-decomposition contained in D with $K = m(F)$ and $P \cap E(K) \neq \emptyset$. In what follows $T(K) := T(K, P \cap E(K), pm(\text{root}(F)))$, $A(K) := A(K, P \cap E(K), pm(\text{root}(F)))$ and K good means $T(K) = A(K) < 5$.

The following three lemmas provide some basic results. The proofs are straightforward and are left to the reader. An end-node of $H[X]$ is a node incident to exactly one edge of X.

(4.3) Lemma. Suppose X is a disjoint union of paths of H.

(a) If $T(H_i) > 1$ (respectively, > 3) (some i), then H_i contains an end-node (respectively, two end-nodes) of $H[X]$ not incident to m, and $T(H) > 1$ (respectively, > 3).

(b) If $H[X]$ has an end-node (respectively, two end-nodes) in H_i (some i) and not incident to m_i, then $T(H_i) > 1$ (respectively, > 3).

By Lemma 4.3, $T(H) \leq 4$ implies at most two of the (H_i, X_i, m_i) are not type 1. Further, if for some i, $T(H_i) = 4$, then $T(H_j) = 1$ for $j \neq i$.

(4.4) Lemma. If $A(H) \leq 4$, then $A(H_i) \leq 4$ ($1 \leq i \leq t$). Moreover, if $T(H_i) = 5$ for some i, then P is not a hypopath of $m(D)$.

(4.5) Lemma. Let H'_i be a 2-isomorphic copy of H_i for some i. Assume $A(H'_i) = A(H_i)$. Then there is an orientation of H'_i such that replacing H_i by H'_i leaves $A(H)$ unchanged.

Theorems 4.6 and 4.8 are the heart of the algorithm for solving the hypopath problem.

(4.6) Theorem. Suppose that Q is not a polygon. If each H_i is good, then either there exists an orientation f' such that $Q_f[H_1, \ldots, H_t]$ is good, or $T(H) = 5$.
Proof. Assume \(T(H) \leq 4 \). Then by Theorem 4.1, since \(Q \) is not a polygon, there are 2-isomorphic copies \(H'_1, \ldots, H'_t \) of \(H_1, \ldots, H_t \), respectively, and an \(f' \) such that \(A(H') = T(H) \leq 4 \), where \(H' = Q_f[H'_1, \ldots, H'_t] \). By Lemma 4.4, \(A(H'_i) \leq 4 \) \((1 \leq i \leq t) \), and by Lemma 4.5 we may assume not all \(H'_i \) are good. Suppose \(H'_1 \) is not good. Then by Lemma 4.2, \(T(H_1) = 3 \) and \(A(H'_1) = 4 \), and so by Lemma 4.3, \(T(H_i) = 1 \) \((i > 1) \). Now, it is obvious that \(A(H') \geq 4 \), and that replacing \(H'_1 \) by \(H_1 \), in either orientation, does not decrease \(A(H') \).

\(\square \)

(4.7) **Computational Remark.** \(f' \) is straightforward to compute. This remark applies as well to Theorems 4.8-4.10. In particular, by Lemma 4.3, either exactly one \(H_i \) is of type 4, and all others are of type 1, or at most two have type 2 or 3 and all others are type 1. In the first case no reorientation is needed. In the second case there are only two possible orientations for the non-type 1 \(H_i \), and in determining which of these are good only the degrees of the ends of \(pm(H_i) \) in \(H_i[P \cap E(H_i)] \) are needed. \(f' \) can thus be found in time linear in \(|W_Q| \).

\(\square \)

A similar theorem holds when \(Q \) is a polygon, but because polygons may have nontrivial 2-isomorphisms a slight modification is needed. Let \(b \) be the number of non-type 1 complete children of \(H \). By Lemma 4.3 it may be assumed that \(b \leq 2 \). Let \(Z \subseteq W_Q \) be the set of child markers of \(H \) that correspond to the non-type 1 complete children. Assume that either \(Z = \emptyset \), \(Z = \{ m_1 \} \) or \(Z = \{ m_1, m_2 \} \). The appropriate relinking procedure is:

Procedure RELINK1(\(Q \))

\(Q \) must be a polygon, and \(Z \) must satisfy \(|Z| \leq 2 \). Relink \(Q \) so that \(W_Q - Z \) is a path, one end of \(W_Q - Z \) is incident to \(m \), the other end is incident to \(m_1 \) (if it exists), and \(m_2 \) (if it exists) is incident to \(m \).

\(\square \)

(4.8) **Theorem.** Suppose RELINK1(\(Q \)) has been applied. If each \(H_i \) is good, then either there exists an orientation \(f' \) such that \(Q_f[H_1, \ldots, H_t] \) is good or \(T(H) = 5 \).

Proof. There are essentially four cases. If \(Z = \emptyset \), the result is clear.
If \(Z = \{m_1\} \) and \(|W_Q| < |E(Q)| - 1 \), then \(T(H) \geq 3 \). If \(A(H_1) = 2 \) or \(3 \), then it is easily seen that there exists an \(f' \) such that \(A(Q_f[H_1, \ldots, H_t]) = 3 \). If \(A(H_1) = 4 \), then Theorem 4.1 implies \(T(H) = 5 \) since \(T(H) \geq 4 \) by Lemma 4.3 and \(W_Q \) does not have enough edges for \(H[X \cup \{m\}] \) to be connected.

If \(Z = \{m_1\} \) and \(|W_Q| = |E(Q)| - 1 \), then \(T(H) \geq 2 \). If \(A(H_1) = 2, 3 \) or \(4 \), then clearly \(f' \) exists such that \(A(Q_f[H_1, \ldots, H_t]) = A(H_1) \), and so if \(A(H_1) = 2 \) we are done. In the case \(A(H_1) = 3 \), the easy part of Theorem 2.1 implies \(T(H) \geq A(H_1) \) since \(X \cup \{m\} \) does not contain a cycle, and when \(A(H_1) = 4 \), Lemma 4.3 implies \(T(H) \geq A(H_1) \).

If \(Z = \{m_1, m_2\} \) and \(|W_Q| < |E(Q)| - 1 \), then \(T(H) \geq 4 \). On the other hand, by Lemma 4.3, \(T(H) \leq 4 \) only if \(T(H_i) \leq 3 \) \((i = 1, 2) \). In this case \(T(H) = 4 \) is clearly achievable.

Suppose \(Z = \{m_1, m_2\} \) and \(|W_Q| = |E(Q)| - 1 \). Then \(T(H) \geq 4 \). If \(T(H_1) = T(H_2) = 2 \), then \(T(H) = 5 \) since \(X \cup \{m\} \) contains a cycle. If \(T(H_i) \geq 4 \) \((i = 1, 2) \), then \(T(H) = 5 \) by Lemma 4.3.

In all other cases it is easy to see \(T(H) = 4 \) is achievable.

*

Algorithm TYPING

Input: The reduced \(t \)-decomposition \(\hat{D} \) corresponding to a \(t \)-decomposition \(D \) and a nonempty set \(P \subseteq E(m(D)) \); the depth partition \(\pi = (\pi_0, \ldots, \pi_s) \) of \(D \), where \(G \in \pi_j \) \((0 \leq j \leq s)\) if the unique path from \(G \) to root(\(\hat{D} \)) has \(j \) arcs. We assume \(s \geq 1 \).

Output: The conclusion that \(P \) is not a hypopath of \(m(D) \), or a reoriented \(\hat{D} \), and hence a reoriented \(D \), such that each complete child \(H_i \) of root(\(\hat{D} \)) is good and \(T(H_i) \) is known.

Comment. Steps T1 and T3 are modified in section 5 under “Rules for selecting \(K_1, K_2 \).”

Step T1. For each polygon \(H \in \pi_s \) apply RELINK\(i(H) \). If \(T(H) = 5 \) for some \(H \in \pi_s \), stop -- Lemma 4.4 implies \(P \) is not a hypopath of \(m(D) \). (Note that each \(H \in \pi_s \) is a polygon, bond, or prime, and so the computation of \(T(H) \) is easy. The data structures required to do this computation in time linear in \(P \cap E(H) \) are discussed in section 6.) Set \(i \leftarrow s - 1 \).

Step T2. If \(i = 0 \), stop -- the desired \(\hat{D} \) has been found.

Step T3. Let \(Q \in \pi_i \), let \(H_1, \ldots, H_t \) be the complete children of \(Q \) in \(\hat{D} \), and let \(H = Q_f[H_1, \ldots, H_t] \) where \(f \) is the current orientation of \(\hat{D} \). If more than two of the \(H_i \) are not type 1, stop -- Lemma 4.3 implies \(P \) is not a hypopath of \(m(\hat{D}) \). If \(Q \) is a polygon, apply RELINK\(i(Q) \). Find, if possible, an orientation \(f' \) and a corresponding new \(\hat{D} \) such that \(Q_{f'}[H_1, \ldots, H_t] \) is good -- see (4.7). If \(T(H) = 5 \), stop.

Repeat the above procedure until a stop occurs, or every \(Q \in \pi_i \) has been treated. When the latter occurs, set \(i \leftarrow i - 1 \) and go to Step T2.

*
The considerations required are slightly different when \(Q = \text{root}(\hat{D}) \) (although the proofs are essentially the same). Typing is no longer important; we wish rather to determine whether or not \(P \) can be made into a path. For example, in this case \(T(H) = 5 \) is preferred to \(T(H) = 4 \).

(4.9) **Theorem.** Suppose \(Q = \text{root}(\hat{D}) \) and \(Q \) is not a polygon. If each \(H_i \) is good, either there exists an orientation mapping \(f' \) such that \(P \) is a path of \(Q_f[H_1,...,H_t] \), or \(P \) is not a hypopath of \(H \).

For polygons the following relinking procedure is needed.

Procedure RELINK2(\(Q \))

\(Q \) must be a polygon. Relink \(Q \) so that \(W_Q - Z \) is a path and, if \(m_i \) exists \((i = 1,2)\), so that \(m_i \) is incident to an end of the path \(W_Q - Z \).

(4.10) **Theorem.** Suppose \(Q = \text{root}(\hat{D}) \) and that RELINK2(\(Q \)) has been applied. If each \(H_i \) is good, then either there exists an orientation \(f' \) such that \(P \) is a path of \(Q_f[H_1,...,H_t] \), or \(P \) is not a hypopath of \(H \).

Algorithm HYPOPATH

Input: A \(t \)-decomposition \(D \) and a set \(P \subseteq E(m(D)) \).

Output: A (new) \(t \)-decomposition \(D \) such that \(P \) is a path of \(m(D) \) and \(m(D) \) is 2-isomorphic to the input \(m(D) \), or the conclusion that no such 2-isomorphism exists, i.e., that \(P \) is not a hypopath of \(D \).

Step H1. Compute the reduced \(t \)-decomposition \(\hat{D} \) for \(P \). If \(\hat{D} \) has just one member, let this member be \(Q \) and go to Step H3.

Step H2. Apply TYPING. If this results in the conclusion that \(P \) is not a hypopath, stop; otherwise, set \(Q \leftarrow \text{root}(\hat{D}) \).

Comment. Step H3 is expanded in section 5 under "Rules for selecting \(K_1,K_2 \)."

Step H3. Let \(H_1,...,H_t \) be the complete children of \(Q \) in \(\hat{D} \). If more than two \(H_i \) are not of type 1, stop -- \(P \) is not a hypopath. Apply RELINK2(\(Q \)) if \(Q \) is a polygon. Find, if possible, an orientation \(f' \) and corresponding \(\hat{D} \) such that \(P \) is a path of \(Q_f[H_1,...,H_t] \) -- see (4.7).
5. DECOMPOSITION UPDATE

Assume the following are given: A t-decomposition D, a path P of $m(D)$, and the reduced t-decomposition \tilde{D} of D with respect to P. Let C be a set such that $C \cap E(m(D)) = P$ with $C-P \neq \emptyset$. The purpose of this section is to give a method to determine a t-decomposition D^* for the graph obtained from $m(D)$ by adding the edges of $C-P$ so that C is a cycle, and $C-P$ is incident to $m(D)$ at exactly two nodes. (In terms of the notation in section 3, $P = P_{k+1}$, $D = D'_k$, $C = C_{k+1}$ and $D^* = D_{k+1}$.)

The idea for finding D^* is intuitively simple. First we select appropriate graphs $K_1, K_2 \in D$ containing the ends of P. If it happens that $K_1 = K_2$, then the construction of D^* changes D very little. When $K_1 \neq K_2$, more complicated modifications are involved. Where R is the unique path in D between K_1 and K_2, we first “squeeze” off certain parts of any polygons that occur in R. Then the remaining graphs are merged and $C-P$ appropriately added.

We introduce a convention. For a given node x of $m(D)$, there may be several nodes of members of D that are merged into x. In the remainder of this section we identify all these nodes with the name x.

Using the following rules, the graphs K_1, K_2 are conveniently found while executing TYPING and HYPOPATH.

RULES FOR SELECTING K_1, K_2

Comment. The end-nodes of P contained in K_1, K_2 are computed while applying rules (R1)-(R4). They will be encountered naturally during the calculations in Steps T1, T3 and H3.

Additions to Steps T1 & T3 in TYPING:

(R1) If $T(H_i) = 1$ (all i) and $T(H) = 2$ or 3, either set $K_1 \leftarrow Q$ if K_1 is not yet assigned, or set $K_2 \leftarrow Q$.

(R2) If $T(H_i) = 1$ (all i) and $T(H) = 4$, set $K_1, K_2 \leftarrow Q$.

(R3) Suppose $T(H_k) = 2$ or 3 for some k, $T(H_i) = 1$ (all $i \neq k$) and $T(H) = 4$. Let K_2 be the node on the unique path in D between Q and K_1 that is nearest K_1 and contains the same end of P as Q.
Additions to Step H9 of HYPOPATH:

(R4) If K_1 has not been assigned, set $K_1, K_2 \leftarrow Q$. Otherwise, let K_2 be the node on the unique path in D between Q and K_1 that is nearest K_1 and contains the same end of P as Q.

(R5) Suppose K_1, K_2 have been selected and $K_1 \neq K_2$. If the ends of P are the ends of $pm(K_1)$ and K_1 is not a bond, set $K_1, K_2 \leftarrow p(K_1)$. If the ends of P are the ends of another marker m_i of K_1, K_1 is a polygon, and m_i is an edge of a bond G, set $K_1, K_2 \leftarrow G$.

The application of the final rule (R5) is needed for the proof of Lemma 5.4.

In the above list of rules, (R1) is justified by Lemma 4.3. In particular, (4.3a) implies $N(H)$ has an end-node x of P not incident to $pm(Q)$, and (4.3b) implies $x \in N(Q)$. (R2) is justified similarly. For (R3), first note that K_1 has already been selected because (R1) must have been applied to H_1 or one of its descendants. Now by Lemma 4.3, P has an end $x \in N(Q)$ not incident to $pm(Q)$, which implies that K_2 could not previously have been assigned. However, x may be incident to a child marker of Q, in which case $K_2 \neq Q$ is possible. Consider now (R4). Clearly $N(H)$ contains both ends of P. If neither K_1 nor K_2 has been assigned, then $T(H_i) = 1$ (all i). Hence, lemma 4.3 implies both ends of P are in $N(Q)$, as required. Similar reasoning justifies the choice of K_2 when K_1 has already been assigned.

(5.1) Lemma. The application of (R1) during the execution of HYPOPATH and TYPING finds $K_1, K_2 \in D$ such that $u_i \in N(K_i)$ ($i = 1, 2$) where u_1, u_2 are the distinct end-nodes of P in $m(D)$.

Where R is the unique path in D between K_1 and K_2, no internal node of R contains u_1 or u_2.

Proof. By the remarks preceding the lemma we need only prove the last statement. There is nothing to prove if $K_1 = K_2$. If (R3) or (R4) was applied we use the fact that u_i is not incident to $pm(K_i)$, and so is contained only in descendants of K_i. The only remaining possibility is that (R1) has been applied twice. But by (4.3a), in this case neither K_i is a descendant of the other, and u_j ($j = 1, 2$) is contained only in descendants of K_j. This completes the proof.

Given that K_1, K_2 have been selected, we can carry out the actual update. Recall that t-decompositions have an underlying arborescence structure, and are oriented. In what follows,
when new members are added to D to form D^*, we will not explicitly specify the new root, how new arcs of the arborescence are directed, or how the orientations of new members are determined. The specification of the new root is straightforward: It will always be the unique node that contains the parent marker of the old root. Given a root, the directions of the arcs of D^* are uniquely specified. Now, for the orientation of D^*, the case $K_1 = K_2$ is easy, and when $K_1 \neq K_2$, with one exception, we employ the natural orientation; thus, in procedure SQUEEZE we choose the orientation such that the merged graph is the one we started with. The one exception occurs in Step U0 where the orientation of $\{f\} \cup (C - P)$ is arbitrary, and in any case can only be determined once "f" has been added to another member of D^*.

We introduce the following procedure for application in Step U2 of UPDATE. Note that D^* and R are defined in UPDATE.

Procedure SQUEEZE(L)

L must be a path in some polygon S of R. If L has fewer than two edges, do nothing. Otherwise, let f' be a new element and replace S in D^* by the two polygons formed by adding f' to the paths L and $S - L$, respectively. Replace S in R by the polygon formed from $S - L$.

Algorithm UPDATE

Input: A t-decomposition D, a path P of $m(D)$, and a set C such that $C \cap E(m(D)) = P$ and $C - P \neq \emptyset$; nodes K_1, K_2 of D and nodes u_1, u_2 of K_1, K_2, respectively, such that the conclusions of Lemma 5.1 hold. We also assume that (R5) has been applied.

Output: A t-decomposition D^* of the graph obtained from $m(D)$ by adding the edges of $C - P$ so that C is a cycle, and $C - P$ is incident to $m(D)$ at exactly two nodes.

Step U0. Set $D^* \leftarrow D$. If $|C - P| = 1$ set $\{f\} \leftarrow C - P$; otherwise, let f be a new element, form a polygon with edge-set $\{f\} \cup (C - P)$ (the order of the edges is irrelevant) and add this polygon to D^*. If $K_1 = K_2$, go to Step U1; otherwise, go to Step U2.

Step U1. (Case $K_1 = K_2$) Apply the appropriate one of (U1.1)-(U1.3) and stop:

(U1.1) If K_1 is not a polygon, join u_1 and u_2 by f in K_1.

(U1.2) Suppose K_1 is a polygon and u_1, u_2 are joined in K_1 by edge f'. Let f'' be a new element. Replace f' by f'' in K_1 and add a bond with edge-set $\{f, f', f''\}$ to D^*.

(U1.3) Suppose K_1 is a polygon and u_1, u_2 are not adjacent. Then there are two distinct paths in K_1, say L_1 and L_2, joining u_1 and u_2. Let f_1, f_2 be new elements. Delete K_1 from D^*, add polygons formed by joining the ends of L_i with $f_i (i = 1, 2)$, and add a bond with edge-set $\{f, f_1, f_2\}$.
Step U2. (Case $K_1 \neq K_2$) Let R be the unique path $K_1 = J_1, \ldots, J_{s+1} = K_2$ in D^* joining K_1 and K_2. Let \(\{m_j\} = E(J_j) \cap E(J_{j+1}) \) (1 \leq j \leq s). Apply (U2.1)-(U2.4) and stop:

(U2.1) Suppose $1 < j \leq s$, J_j is prime and \(\{m_{j-1}, m_j\} \) is a cycle of J_j, or J_j is a bond on at least 4 edges and $p(J_j)$ is not in R. Let f' be a new element. Let J'_j be J_j with $\{m_{j-1}, m_j\}$ deleted and f' added (with the same ends), and let B be a bond with edge-set $\{m_{j-1}, f', m_j\}$. Replace J_j in R by B; delete J_j from D^* and replace it by J'_j and B. (Note: There can be at most one J_j as above.)

(U2.2) If K_1 is a polygon, let L_1, L_2 be the two paths joining m_1 and u_1. Apply SQUEEZE(L_i) ($i = 1, 2$). Do the same for K_2, if K_2 is a polygon.

(U2.3) For each internal J_j in R that is a polygon, let L_1, L_2 be the two components of $J_j - \{m_j, m_{j+1}\}$ and apply SQUEEZE(L_i) ($i = 1, 2$).

(U2.4) Let G be $m(R)$ with f joining u_1 and u_2. Delete R from D^* and add G.

We must now prove that D^* is a t-decomposition and that it is the "right" t-decomposition. The second is the easier of the two assertions, and is treated in the following lemma.

(5.2) Lemma. After UPDATE has been applied, $m(D^*)$ equals the graph obtained from $m(D)$ by adding the edges $C - P$ so that C is a cycle and $C - P$ is incident to $m(D)$ at exactly two nodes.

Proof. This proof reduces to a careful reading of the steps of UPDATE. We treat only the case $|C - P| > 1$. In Step U0 denote \(\{f\} \cup (C - P) \) by S'. Note that S' is a member of D^*. Let $D^*_{1'}$ denote the final D^* with S' deleted and f deleted from the remaining member of D^* that contains it as an edge.

First, we observe that $m(D^*_{1'}) = m(D)$. Step U0 and (U1.1) present no difficulties. In (U1.2), once f is deleted, merging the remaining 2-bond $\{f', f''\}$ with K_1 yields D; in (U1.3), merging the remaining 2-bond $\{f_1, f_2\}$ with the L_1 and L_2 polygons yields D. Now consider Step U2. Deleting f in this case just means leaving out a part of (U2.4). But then it is straightforward to see that none of (U2.1)-(U2.4) change $m(D^*)$. This proves $m(D^*_{1'}) = m(D)$.

Now to complete the proof, note that f is added in either (U1.1)-(U1.3) or (U2.4). It is clear in (U1.1) and (U2.4) that f joins u_1 and u_2 in $m(D) = m(D^*_{1'})$. Steps (U1.2) and (U1.3) are handled as in the previous paragraph. Now, given that f has been added, it only remains to reinsert S'. But clearly this has the desired effect of adding $C - P$ as a path meeting $m(D)$ at u_1, u_2.
The main step in proving that D^* is a t-decomposition is the following lemma.

(5.3) Lemma. G in (U2.4) is prime.

Proof. Let x and y be distinct nodes of G. We show that there are three node disjoint (except for x and y) paths joining x and y. Assume that in (U2.4), $x \in N(J_i)$ and $y \in N(J_k)$ where $i \leq k$. We also assume $\{x, y\} \cap \{u_1, u_2\} = \emptyset$; the proof when this latter assumption fails is an easy variation of the following arguments.

By (U2.2) and (U2.3) we may assume neither J_i nor J_k is a polygon. If $i = k$, then since J_k is either prime or a bond with at least three edges, it contains three node-disjoint paths from x to y. Suppose one of these paths L contains m_i. Then the merge of J_{i+1}, \ldots, J_k, since this graph is 2-connected, contains a cycle C containing m_i, and $(C \cup L) - \{m_i\}$ is a path in G. Applying this procedure at most twice, we obtain the desired paths in G.

Suppose that $i \neq k$. Consider J_i. If $i \neq 1$ and J_i is prime, $J_i[\{m_{i-1}, m_i\}]$ has at least three nodes by (U2.1) and there are three node-disjoint paths from x to three of these nodes, including the ends of m_i, and such that m_i and m_{i-1} are not in these paths. Let α_1 be the end of m_{i-1} used and let α_2 be the other end of m_{i-1}. If $i = 1$, find three node-disjoint paths in J_1 from x to u_1 and the ends of m_1 (and not containing m_1); in this case α_2 is undefined and $\alpha_1 = u_1$. In the case that J_i is a bond, let $\alpha_1 = x$ and α_2 be the other node in J_i. Perform the symmetric construction for J_k defining β_1 and β_2. Let L_1 be a path in the merge of J_1, \ldots, J_{i-1} from u_1 to α_1, avoiding α_2. L_2 is defined similarly for u_2, β_2. Finally, let C be a cycle of the merge of J_{i+1}, \ldots, J_{k-1} (empty if $i + 1 = k$) containing m_i and m_{k-1}. Then $L_1 \cup L_2 \cup \{f\} \cup (C - \{m_i, m_{k-1}\})$ together with the paths constructed in J_i and J_k gives the desired three paths in G.

We are now prepared to prove

(5.4) Lemma. D^* is a t-decomposition.

Proof. We must verify that D^* has the following properties: (a) It is a decomposition, (b) every member has at least three edges, (c) there are no adjacent polygons or bonds, (d) no non-bond has
an edge parallel to its parent marker, and (e) every member is a bond, polygon, or prime.

Most of the work in verifying (a)-(e) involves simply a careful reading of UPDATE, as in the proof of Lemma 5.2. We mention only the highlights.

For (a) note that in Step U0 and in the case |C - P| > 1, the conditions for D* to be a decomposition are violated since the polygon (C - P) ∪ {f} has no edges in common with any other member of D*. However, it is easy to verify that f is later added to exactly one other member of D*, thus restoring the required property.

In proving (b) note that |C - P| > 1 implies |(C - P) ∪ {f}| ≥ 3 in Step U0. Also note that whenever SQUEEZE(L) is applied, no change occurs unless L has at least two edges (S - L always has at least two edges). Finally, note that since J in (U2.1) is prime, or a bond on at least 4 edges, |E(J)| - 1 ≥ 3.

Part (e) is easy to verify in view of Lemma 5.3. Consider now (c). Step U0 creates no new adjacencies, and so no violations to (c). However, a polygon may be created and it must then be verified that edge f is added to no other polygon. That this is true follows from inspection and Lemma 5.3. Note also that no violation of (c) is created in (U1.2). Here f' cannot be in another bond of D* by (R5).

Finally, consider (d). (U1.1) preserves (d) by (R5). Steps (U1.2), (U1.3), and (U2.1)-(U2.3) increase the "edge multiplicities" only in bonds. In (U2.4), u1 and u2 are not adjacent until f is added, and otherwise edge multiplicities are not increased. Hence, if in (U2.4) the parent marker of G is parallel to another edge, then it was the parent marker of a bond in R with at least 4 edges. This possibility is ruled out by (U2.1). This completes the proof.

6. THE MAIN ALGORITHM

We begin by stating GRAPH. This is followed by a listing of the data structures that are needed to implement the algorithm, and a discussion of how these data structures are updated.
Algorithm GRAPH

Input: An $r \times c$ totally nonseparable $\{0,1\}$-matrix M. We assume (see the first paragraph of section 4) that the first column of M is a singleton. (Such a column can always be added without affecting the realizability of M.)

Output: The conclusion that M is not realizable, or a realizing graph G for M. We use the notation introduced in section 3.

Step G1. M_1 is realized by a bond G_1 with two edges. Set $D_1 \leftarrow \{G_1\}$ where for $pm(G_1)$ we choose the non-tree edge of G_1. (Note that D_1 is a decomposition, but not a t-decomposition because G_1 has only two edges. All further $D_j, j \geq 2$, will be t-decompositions.) If $c = 1$, stop (M is graphic). Otherwise, set $j \leftarrow 2$.

Step G2. Set $P \leftarrow P_j$ and $D \leftarrow D_{j-1}$. Apply HYPOPATH. If P is not a hypopath of $m(D)$, stop.

Comment. If a maximal graphic subset of columns is desired, not just a determination of the realizability of M, then instead of terminating when P is not a hypopath, simply discard column j and continue the algorithm.

Step G3. Set $C \leftarrow C_j$ and apply UPDATE. (Note that the quantities K_1, K_2, u_1, u_2 required for input to UPDATE are calculated in HYPOPATH, and the associated calls to TYPING, through application of rules (R1)-(R5).) Set $D_j \leftarrow D^*$.

Step G4. If $j = c$, set $G \leftarrow m(D_j)$ and stop; otherwise set $j \leftarrow j + 1$ and go to Step G2.

The validity of GRAPH follows from the results of sections 4 and 5.

DATA STRUCTURES. Each of the columns and rows of matrix M is assumed to have a distinct name, taken from the integers $1, \ldots, r + c$; all marker edges created during the algorithm are also given distinct names, one for each of the two graphs containing them. Each member of each decomposition is named, and each node of each member is named. These node names for the graphs in any fixed decomposition will always be distinct, even though after merging several may be identified.

(D1) M: The given matrix is assumed stored in column list form. Thus, for each column we can access in linear time the list of rows with ones in this column. For each row name we keep an indicator to designate if this row is in a previously processed column.

(D2) Members of D, where D is the current t-decomposition: These are stored and accessed using the standard disjoint set union data structure with path compression (see Tarjan [15]). Thus, for given distinct member names x, y we can perform makeset(x) (assuming x is not yet in any set), create a single element set $\{x\}$ with name x), find(x) (find the name of the set containing x) and link(x, y) (form the union of the two sets containing x and y). The sets are stored as arborescences, the root of which is the name of that set. Computing find(x) involves tracing a directed path from x to the root of its tree, and then “compressing” this path so that all nodes on it point directly to the root. The operation link(x, y) is performed by first performing find(x) and find(y), and completed by creating an arc pointing from the root of the shallower of the two trees to that of the deeper.
(D3) **Nodes of members of D:** Disjoint set data structure, as in (D2).

(D4) **Edge locations:** Pointers from edges to the names of the members containing them. Thus, to find the member containing an edge, we first access the member \(x \) pointed to by the edge, and then perform a (D2) \(\text{find}(x) \).

(D5) **Predecessor function \(p \) of \(D \):** Pointers from member names to member names.

(D6) **Member designation:** For each member name, a indicator designating whether it is a bond, polygon, or prime.

(D7) **Polygon sizes:** The number of edges in each polygon.

(D8) **Polygon edge-sets:** Doubly-linked lists.

(D9) **Edge ends:** Pointers from each edge to its ends. Note that for a given edge, once the two ends \(u, v \) have been accessed it will still be necessary to perform two (D3) finds in order to find the current names of these ends. For marker edges, one of the two ends is designated + and one −. This serves to orient \(D \).

(D10) **Parent markers:** \(pm(x) \) for each member name \(x \).

(D11) **Child markers:** For each current member \(x \neq \text{root}(D) \), \(pm(x) \) is associated with some child marker of \(\text{find}(p(x)) \). We keep a pointer from \(x \) to this child marker. In the case when \(x \) is a bond and \(\text{find}(p(x)) \) is a polygon, we also keep a pointer from the child marker to \(x \).

DATA STRUCTURE APPLICATION AND UPDATE. We discuss here the highlights of how (D1)-(D11) are applied and updated.

(6.1) Executing Step H1: \(P \) and \(C−P \) are computed in time \(O(|C|) \) using (D1), and the indicators for \(C−P \) are updated. Then using (D4) and (D2) we construct a list of members in \(D \) containing edges of \(P \). This requires \(O(|P|) \) (D2) finds. Using this list and (D5), the computation of \(\hat{D} \) and simultaneously the depth partition \((\pi_0, \ldots, \pi_e) \) required as input by TYPING uses \(O(|\hat{D}|) \) additional (D2) finds.

(6.2) Executing Step T1: If \(H \) is a bond, as determined by (D6), this is straightforward. Otherwise, let \(X = P \cap E(H) \). A list of the elements in \(X \) can be conveniently created for each \(H \in \hat{D} \) as \(\hat{D} \) is computed. If \(H \) is prime, then using (D9) and (D3) we construct a representation for \(H[X] \) that uses space \(O(|X|) \), and do this with \(O(|X|) \) (D3) finds.

The most complicated case occurs when \(H \) is a polygon and RELINK1 is applied. Starting with the marker \(m = pm(H) \), we swap edges in pairs in order to build a path \(L \) in \(H \) one end of which is \(m \), and every other of which is in \(X \). At a general step we take the
non-\textit{m} end-edge of \textit{L} and find its neighbor. If this edge is not in \textit{X}, it is swapped in \textit{H} with the next edge of \textit{X} not already in \textit{L}. This uses (D3), (D8) and (D9) and updates (D8) and (D9). It requires time $O(|\textit{X}|)$ (D3) finds.

(6.3) Executing Steps T3 and H3: In addition to the work in (6.2), (D9) is applied to accomplish the reorientation. See (4.7).

(6.4) Executing (R1)-(R5): The application of (R5) requires special consideration since the final assignment statement may require accessing a child of a node. However, this happens only for polygon-parent, bond-child pairs and (D11) may be used.

(6.5) Executing Step U1: Determining if \textit{K} \textsubscript{1} is a polygon takes constant time because of (D6). (U1.1) takes constant time, as does (U1.2). In (U1.3) particular care must be taken with (D4). Thus, when two polygons are formed from one, then only one of these can retain the name of the old polygon member, and hence for every edge in one of the new polygons (D4) must be updated. In this update we always choose the piece \textit{L} \textsubscript{j} that meets the set \textit{W} = (\textit{P} \cap \textit{E}(\textit{K} \textsubscript{1})) \cup \textit{F} where \textit{F} is the set of child markers of \textit{K} \textsubscript{1} such that \textit{P} meets the corresponding complete child. It is easy to see then that \textit{L} \textsubscript{j} \subseteq \textit{W}, and hence that $O(|\textit{P}|)$ work will accomplish the update.

We must also update (D5) for all children of the polygon \textit{L} \textsubscript{j} \cup \{\textit{f} \textsubscript{j}\} having the same name. This can be done in $O(|\textit{D}|)$ time since \textit{L} \textsubscript{j} \subseteq \textit{W} implies all children are in \textit{D}.

(6.6) Executing Step U2: First \textit{R} must be calculated, which uses $O(|\textit{R}|)$ (D2) finds. (These will be constant-time finds given that the reduced \textit{t}-decomposition for \textit{P} has already been found in HYPOPATH.) (U2.1) requires four (D3) finds to check adjacency of \textit{m} \textsubscript{j} and \textit{m} \textsubscript{j-1}. For (U2.2) and (U2.3), the nontrivial work involves the applications of SQUEEZE. Again, by the convention introduced in (6.5), the total work for the SQUEEZEs involves $O(|\textit{P}|)$ constant-time updates in (D4), and $O(|\textit{R}|)$ constant-time operations on each of (D2), (D3), (D5)-(D11). Finally, in (U2.4) the forming of \textit{m}(\textit{R}) requires $O(|\textit{R}|)$ (D2) and (D3) links.

(6.7) We remark that (D7) is not necessary to implement the algorithm. However, its availability will sometimes speed up the computation of \textit{T}(\textit{H}) when \textit{H} is a polygon.
7. TIME AND SPACE BOUNDS

We begin by giving bounds for one application of HYPOPATH and one application of UPDATE. Note that (R1)-(R5) of section 5 are applied in HYPOPATH.

(7.1) Lemma. One application of HYPOPATH uses time bounded by the time required for \(O(|P| + |\hat{D}|) \) find operations using (D2) and (D3).

Proof. Step H1 takes \(O(|P| + |\hat{D}|) \) (D2) finds by (6.1). Now consider Steps T1, T3 and H3. For \(Q \in \hat{D} \), let \(H_1, \ldots, H_t \) be a list of the complete children of \(Q \) in \(\hat{D} \) (this list may be empty). Define

\[
W_Q = (P \cup E(Q)) \cup \{m_1, \ldots, m_t\}
\]

where \(m_i = pm(H_i) \) (1 \(\leq \) i \(\leq \) t), and set \(H = Q_f[H_1, \ldots, H_t] \). By (6.2) and (6.3), \(T(H) \) and an orientation \(f' \) such that \(Q_f[H_1, \ldots, H_t] \) is good can be found with \(O(|W_Q|) \) (D3) finds. But

\[
\sum_{Q \in \hat{D}} |W_Q| = |P| + |\hat{D}| - 1.
\]

This proves the result.

(7.2) Lemma. One application of UPDATE uses time bounded by \(O(|C| + |R|) \) finds using (D2) and (D3) (R is defined in Step U2).

Proof. Step U0 can clearly be carried out in time \(O(|C|) \). The remainder of the proof follows from (6.5) and (6.6).

For the final derivation of the time and space bounds we need the results (7.3)-(7.11).

(7.3) Lemma. Let \(G \) be a nonseparable graph with \(r \geq 3 \) nodes. Let \(D \) be a \(t \)-decomposition of \(G \) and let \(H_1, \ldots, H_t \) be the prime members of \(D \). Then

\[
\sum_{i=1}^{t} |N(H_i)| \leq 2r-4.
\]

Proof. The result follows easily by induction on \(r \).
The algorithm GRAPH proceeds by producing a sequence of t-decompositions. Let D_1, \ldots, D_t be the sequence produced for a given $r \times c \{0,1\}$-matrix. For each index j ($1 \leq j \leq c$) such that Step U2 is applied, denote by R_j the path R of nodes merged in (U2.4). Every prime node H that occurs in the algorithm originates from the application of (U2.4) to some R_j; H may then be further modified by application of (U1.1) or (U2.1), and so several Hs may have the same associated j, but the value of j for a given H is still well defined. Now define, recursively, the sets I_H by $I_H = \{j\} \bigcup \bigcup_{J \in R_j, J \text{ prime}} I_J$.

\textbf{(7.4) Lemma.} For each prime H that occurs as a node of some decomposition in GRAPH,

$$|N(H)| \geq 3 + \sum_{i \in I_H} (|R_i| - [|R_i|/2]).$$

([x] is the least integer not less than x.)

\textbf{Proof.} Let $p_i = |R_i| (i \in I_H)$. The proof is by induction in $|I_H|$. If $I_H = \{i\}$, then

$$|N(H)| = 2(1-p_i) + \sum_{J \in R_i} |N(J)|.$$

If J is a bond, then $|N(J)| = 2$, and if J is not a bond then $|N(J)| \geq 3$. Since no two bonds can share a marker edge, and neither end-graph of R_i can be a bond, by Lemma 5.1, the number of bonds in R_i is bounded by $\lceil p_i/2 \rceil - 1$. Therefore

$$|N(H)| \geq 2(1-p_i) + 3p_i - \lceil p_i/2 \rceil + 1 = 3 + p_i - \lceil p_i/2 \rceil.$$

Now let $|I_H| > 1$. Define $m = \max\{i : i \in I_H\}$ and $I_H^r = I_H - \{m\}$. For each prime node $J \in R_m$, induction yields

$$|N(J)| \geq 3 + \sum_{i \in I_J} (p_i - \lceil p_i/2 \rceil).$$

Let $R_m^r = \{J \in R_m : J \text{ prime}\}$ and $R_m^{rr} = R_m - R_m^r$. Then

$$|N(H)| \geq 2(1-p_m) + \sum_{J \in R_m^r} \left(3 + \sum_{i \in I_J} (p_i - \lceil p_i/2 \rceil)\right) + \sum_{J \in R_m^{rr}} |N(J)|.$$

Since $\{I_J : J \in R_m^r\}$ partitions I_H^r, it follows that
\[|N(H)| \geq 2(1-p_m) + 3|R_m'| + \sum_{i \in I_H^m} (p_i - \lceil p_i/2 \rceil) + 3(p_m - |R_m'|) - (\lceil p_m/2 \rceil - 1) \]

\[= 3 + \sum_{i \in I_H} p_i - \sum_{i \in I_H} \lceil p_i/2 \rceil \]

(7.5) **Theorem.** For \(r \geq 3 \),

\[\sum_{i \in R_i} |R_i| \leq 6r - 12. \]

Proof. Let \(P \) be the set of prime members of \(D_r \). By Lemmas 7.3 and 7.4,

\[6r - 12 \geq 3 \sum_{H \in P} \left\{ 3 + \sum_{i \in I_H} (|R_i| - \lceil |R_i|/2 \rceil) \right\} \]

\[\geq \sum_{H \in P} \left\{ 9 + \sum_{i \in I_H} |R_i| \right\} \geq \sum_{i \in R_i} |R_i|. \]

Theorem 7.5 says that the total number of graphs ever involved in a (U2.4) merge is \(O(r) \).

For each \(t \)-decomposition \(D_i \), let \(\hat{D}_i \) be the corresponding reduced \(t \)-decomposition. Then \(R_i \subseteq \hat{D}_i \).

Next we bound the number of nodes in \(\hat{D}_i \), but not in \(R_i \).

(7.6) **Lemma.** Let \(H \) be a nonseparable graph and let \(X \) be a cycle of \(H \). Let \(D \) be a \(t \)-
decomposition of \(H \) and let \(\hat{D} \) be the reduced \(t \)-decomposition with respect to \(X \). Then \(|\hat{D}| \leq |X| + 1 \).

Proof. The theorem is clear if \(|\hat{D}| = 1 \). If \(\hat{D} \) has depth one, then all but at most one node of \(\hat{D} \) contains edges of \(X \). Again the result is clear. Hence, we may assume that there is a pendant node \(K \) of \(\hat{D} \) where \(K \) is at least distance two from \(root(\hat{D}) \).

Let \(K' \) be the parent of \(K \), and let \(X' = (X - E(K)) \cup \{pm(K)\} \). Clearly \(X' \) is a cycle of \(m(\hat{D}') \), where \(\hat{D}' \) is \(\hat{D} \) with \(K \) deleted. If \(K' \) has more than one child, \(\hat{D}' \) is a reduced \(t \)-
decomposition for \(X' \). In this case, the theorem follows by induction on \(|\hat{D}| \). Suppose \(K' \) has
only K as a child and that $X \cap E(K') = \emptyset$ (otherwise, again we may apply induction). But then $pm(K)$ is parallel to $pm(K')$ in K' and so K' is a bond.

Now by the choice of K, K' is not $\text{root}(\hat{D})$; moreover, $p(K')$ is not a bond. Hence \hat{D}'', \hat{D} with K and K' deleted, is a reduced t-decomposition for X'. In addition, note that $|X \cap E(K)| \geq 2$; otherwise K has and edge parallel to its parent marker, and is not a bond. Since at least two edges of X have been deleted, and exactly two nodes of \hat{D}, the result follows by induction.

\begin{flushright}
\bullet
\end{flushright}

\textbf{(7.7) Theorem.} Let $\hat{D}_1, \ldots, \hat{D}_c$ be the sequence of reduced t-decompositions produced by GRAPH. Then

$$\sum_{i=1}^{c} |\hat{D}_i| \leq 2n + c + 6r - 12.$$

Proof. Consider a particular \hat{D}_i. Let $R_i = \{K_1\}$ if $K_1 = K_2$ in UPDATE. Now \hat{D}_i can be viewed as a collection of trees attached to R_i. For a particular one of these trees T', let m' be the marker linking T' to R_i. Then clearly $X = (P_{i+1} \cap E(m(T'))) \cup \{m'\}$ is a cycle in $m(T')$, and, indeed, T' is a reduced t-decomposition for X. Hence, by Lemma 7.6, $|T'| \leq |X| + 1 \leq 2|X|$. Summing over all such T', we have that the total number of nodes of \hat{D}_i not in R_i is bounded by $2|P_{i+1}|$. Hence,

$$\sum_{i=1}^{c} |\hat{D}_i| \leq \sum_{i=1}^{c} (|R_i| + 2|P_{i+1}|) \leq c + 6r - 12 + 2n$$

by Theorem 7.5.

\begin{flushright}
\bullet
\end{flushright}

\textbf{(7.8) Lemma.} \sum_{|G_j - P_j| \geq 2} |G_j - P_j| \leq 2r.

\begin{flushright}
\bullet
\end{flushright}

\textbf{(7.9) Lemma.} For a single application of GRAPH, the total number of node names created for nodes of members of t-decompositions and the total number of member names created are both bounded by $O(r)$.

Proof. For a t-decomposition D, define $S(D) = \sum(|C| - 3; C$ is the edge-set of a polygon of $D)$.

\textbf{Proof.}
Note that in order for (Ul.3) or SQUEEZE to be applied it must be that $S(D) > 0$. Moreover, the application of either of these operations reduces $S(D)$. On the other hand, $S(D)$ can only be increased in Step U0, and then only by $|C-P|-2$, whenever $|C-P| \geq 2$. Hence, it follows from Lemma 7.8 that (Ul.3) and the SQUEEZE procedure can be applied at most $O(r)$ times.

Now define $S'(D) = \sum (|C| - k(C); C$ is the edge-set of a polygon of $D)$ where $k(C)$ is the number of markers in C that are also in some bond. Note that in order for (U1.2) to be applied it must be that $S'(D) > 0$. $S'(D)$ can only be increased by application of Step U0 or the SQUEEZE procedure. The total increase over all applications of Step U0 is $O(r)$ by Lemma 7.8. On the other hand, each application of SQUEEZE increases $S'(D)$ by only a small constant. In view of the calculations of the previous paragraph, the total increase over one application of GRAPH is therefore bounded by $O(r)$. But each application of (U1.2) decreases $S'(D)$. It follows that (U1.2) can be applied at most $O(r)$ times.

By the calculations of the previous two paragraphs we may ignore (U1.2), (U1.3), (U2.2) and (U2.3) in counting the number of nodes and the number of members created. The number of applications of (U2.1) is bounded by $O(r)$ because of Theorem 7.5. (U2.4) adds no node or member names (the new member $m(R)$ inherits its name, through (D2) links, from one of the members in R). (U1.1) also adds no node or member names. Finally, the number of node and member names created in Step U0 is bounded by $O(r)$ by Lemma 7.8.

(7.10) Lemma. The total number of edge names created by an application of GRAPH is bounded by $O(r+c)$.

Proof. A direct examination of UPDATE shows that no more than $|C-P|+6$ edges can be added by any one application.

We now introduce a result of Tarjan [15]. Define the so-called Ackerman function $A(i,j)$ on pairs of positive integers i, j by: $A(1,j) = 2^j$, $A(i,1) = A(i-1,2)$ for $i \geq 2$ and $A(i,j) = A(i-1, A(i,j-1))$ for $i, j \geq 2$. For integers $m \geq n \geq 1$, define
\(a(m, n) = \min\{i \geq 1 : A(i, \lfloor m/n \rfloor) > \log_2 n\} \). The function \(a(m, n) \) is very slow growing, being for all practical purposes never bigger than 4. \(A(4, 1) = f(17) \), where \(f(1) = 2 \) and \(f(k) = 2f(k-1) \) for \(k \geq 2 \). Thus, \(f(4) = 2^{5535} \).

Theorem. (Tarjan [14]) The disjoint set union algorithm with path compression runs in time \(O(ma(m, n)) \) where \(m \) is the total number of operations (makesets, links and finds) and \(n \) is the number of elements in the underlying set.

Theorem. Given an \(r \times c \) \(\{0, 1\} \)-matrix with \(n \) nonzero entries, GRAPH runs in time \(O(na(n, r)) \) and uses space \(O(n) \).

Proof. The time bound for Steps G1-G3 follows from (7.1), (7.2), (7.7), (7.9) and (7.11). For Step G4 note that \(G \) can be computed directly using (D9) and \(O(c) \) (D3) finds. The space bound follows from (7.9), (7.10) and an examination of (D1)-(D11). The determining factor is the storage for the input matrix. We note that some temporary storage is involved in the implementation of several of the steps, principally Steps T1, T3, and H3 (see (6.2)). This storage is not recorded in (D1)-(D11). However, it can easily be verified never to exceed \(O(|P| + |\hat{D}|) \).

It is open whether there is an \(O(n) \) algorithm for graph realization. Recently Gabow and Tarjan [8] have given some conditions under which disjoint sets can be treated in linear time, and although such a reduction in the time required for the applicable parts of GRAPH would imply a linear time bound, our problem does not seem to meet their conditions. Indeed, we conjecture that there is no linear-time (i.e., \(O(n) \)) algorithm for graph realization.
APPENDIX. AN EXAMPLE

Consider the 9×8 matrix M in Figure 3:

\[
\begin{array}{cccccccc}
10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
2 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
3 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
4 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
5 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
6 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\
7 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
8 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
9 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

Figure 3: Input Matrix M

M is totally nonseparable since each column, except the first, has a 1 in a row with a 1 in a previous column. We use the labels $B_1, B_2, ...$ for the graphs that occur in t-decompositions during the execution of the algorithm.

Column 10: In Step G1 and obtain $G_1 = B_1$ with $D_1 = \{B_1\}$ and $pm(B_1) = 10$.

Figure 4: D_1 (column 10)

Column 11: In Step G2 we have $P = \{1\}$. Note that $D = D_1$ is not a t-decomposition since B_1 has only two edges, but is a t-decomposition in all other respects.

Step H1 is trivial since D has only one member. In Step H3, $t = 0$, so $H = Q = B_1$. B_1 is by convention not a polygon, since it has two edges, and so RELINK2(B_1) is not applied. Note that $|P| = 1$, and so P is automatically a path. Note also that (R4) and (R5) are applied in Step H3. Since TYPING was not used in this case, (R1)-(R3) were not applied. Thus, $K_1 = K_2 = B_1$. No change occurs in (R5) since B_1 is a bond, even though $K_1 = K_2$ and the ends of P are the ends of $pm(B_1) = 10$.
In Step G3 we have $C = \{1, 7, 8, 9, 11\}$. The identities of u_1, u_2 as required by the input for UPDATE are clear since B_1 has only two nodes. In Step U0 we have $C - P = \{7, 8, 9, 11\}$. Let $f = 18$. Adding a polygon B_2 with edges $\{7, 8, 9, 11, 18\}$ to $D^* = \{B_1\}$ we obtain the non-decomposition D^* as in Figure 5 ("non" because there is no marker edge shared by B_1 and B_2).

![Figure 5: D^* for column 11](image)

In Step U1 we apply (U1.1) since, by convention, B_1 is not a polygon. This yields the t-decomposition D_2 in Figure 6. Note that the marker edge 18 has been oriented. The orientation is arbitrary, as suggested by the discussion following the proof of Lemma 5.1. Note also that edge 18 is given the same name in both B_1 and B_2. This causes no difficulty here, in contrast to the situation in a computer implementation, as the distinct identities of these two edges is clear from the picture.

![Figure 6: D_2 (column 11)](image)

Column 12: We now have $P = \{7, 8\}$. In Step H1 the reduced decomposition is $\hat{D} = \{B_2\}$ since this member of D contains all the edges of P. In Step H3, $t = 0$, so $H = Q = B_2$. Since B_2 is a polygon we apply RELINK2(B_2). Now $W_Q = P = \{7, 8\}$ (see definition of W_Q preceding Lemma 4.3), and $Z = \phi$ since $t = 0$ (see definition of Z preceding RELINK1). But $W_Q - Z = \{7, 8\}$ is already a path in B_2, and so nothing happens. Also no reorientation occurs in Step H3 because $t = 0$, or, more generally, because $Z = \phi$. Because of (R4), $K_1 = K_2 = B_2$. No change occurs in (R5) since u_1 and u_2 are not adjacent (see Figure 6).
In Step G3 we have $C = \{2,3,4,6,7,8,12\}$, and in Step U0 $C - P = \{2,3,4,6,12\}$. Let $f = 19$. Adding a polygon B_3 with edges $\{2,3,4,6,12,19\}$ to D' we obtain the non-decomposition D' as in Figure 7.

![Figure 7: D' for column 12](image)

In Step U1 we apply (U1.3). Letting $f_1 = 20$ and $f_2 = 21$, and where the path L_1 has edges $\{9,11,18\}$ and L_2 has edges $\{7,8\}$, we obtain the t-decomposition D_3 in Figure 8.

![Figure 8: D_3 (column 12)](image)

Column 13: We now have $P = \{2,3,4,6,7\}$. In Step H1 the reduced decomposition is $\hat{D} = \{B_3, B_4, B_5\}$, as given in Figure 9, where the inclusion of B_4 is forced by connection. This leads to our first application of TYPING.

![Figure 9: \hat{D} for column 13](image)
The depth partition is given by \(\pi_0 = \{B_4\} \) and \(\pi_1 = \{B_3, B_5\} \), so that \(s = 1 \). In Step T1 we must apply both \(\text{RELINK}_1(B_3) \) and \(\text{RELINK}_1(B_5) \) since \(B_3, B_5 \) are both polygons. However, in both cases \(Z = \emptyset \); moreover, \(W_{B_3} = \{2, 3, 4, 6\} \) and \(W_{B_5} = \{7\} \) are both paths incident to the parent markers, 19 and 21, respectively. Hence, no relinking actually occurs, and we have \(T(B_3) = T(B_5) = 3 \).

We must now apply Step H3. We have \(Q = B_4 \), \(H_1 = B_3 \) and \(H_2 = B_5 \). The current orientation is given by the directions on the marker edges 19 and 21. Since \(Q \) is not a polygon we do not apply \(\text{RELINK}_2 \). It remains only to determine a new orientation \(f \). As suggested in (4.7), to do this all we need to know about \(H_1 \) and \(H_2 \) is that both are type 3, in addition to knowing which parent marker end-nodes meet \(W_{H_1} \) and \(W_{H_2} \), respectively. These are the nodes \(x \) and \(y \) in Figure 9. Since their corresponding nodes on \(Q \) under \(f, x' \) and \(y' \), are not equal, one of 19,21 must be reoriented. We reorient 19, which yields the reduced decomposition \(\hat{D} \) given in Figure 10.

Figure 10: Reoriented \(\hat{D} \) for column 13

In Step G3 we have \(C = \{2, 3, 4, 6, 7, 13\} \). For the input requirements of UPDATE we note that \(K_1, K_2, u_1, u_2 \) are chosen in Step T1 by the application of rule (R1). Thus, we have \(K_1 = B_3 \) and \(K_2 = B_5 \) (\(K_2 = B_3, K_1 = B_5 \) is an equally valid choice), where \(u_1, u_2 \) are specified in Figure 10. In Step U0 we have \(D^* \) as in Figure 8, except that edge 19 has been reoriented in \(B_4 \). Since \(C - P = \{13\} \) we obtain \(f = 13 \). Nothing is added to \(D^* \) in this step.

Now we come to Step U2. For the path \(R \) we have \(J_1 = B_3 \), \(J_2 = B_4 \), \(J_3 = B_5 \), \(s = 2 \), \(m_1 = 19 \), and \(m_2 = 21 \). Note that \(B_4 \) is a bond, and that \(p(B_4) = B_2 \) is not in \(R \). However, \(B_4 \) has only three edges. Thus, no change occurs in (U2.1). In (U.2) we apply \(\text{SQUEEZE}(L) \) for \(L = \{2, 3, 4, 6\} \); all other \(Ls \) encountered have only one edge so that \(\text{SQUEEZE} \) has no effect in these cases. The resulting \(D^* \) is given in Figure 11.
Nothing occurs in (U2.3) since R has no internal polygons. Finally, applying (U2.4) we obtain the t-decomposition D_4 of Figure 12, where B_3 is the graph G produced by the merge.

Column 14: We have $P = \{2,3,4,6,7,8\}$, $\hat{D} = \{B_3,B_6\}$, $\pi_0 = \{B_3\}$, and $\pi_1 = \{B_6\}$. In Step T1, RELINK(B_6) has no effect, and $T(B_6) = 1$. This brings us to Step H3 with $Q = B_3$, $H_1 = B_6$ and $t = 1$. Since $T(H_1) = 1$ no reorientation occurs. $K_1 = K_2 = B_3$ because of rule (R4) applied in Step H3, with u_1, u_2 as indicated in Figure 12. In Step U0, $f = 14$. Finally, (U1.1) is applied yielding D_5 as in Figure 13.

Column 15: We have $P = \{6\}$ and $\hat{D} = \{B_6\}$. In Step H3, RELINK2(B_6) switches the positions of 4 and 6, where $W_Q = \{6\}$, $Z = \phi$, so that 6 is adjacent to $pm(B_6) = 22$. Because $t = 0$, no reorientation occurs, $K_1 = K_2 = B_6$, by (R4), and u_1, u_2 are the ends of 6 in B_6. In Step U0 we
take \(f = 23 \) (a new element) and introduce a polygon \(B_7 \) on edge-set \(\{ f \} \cup (C - P) = \{ 5, 15, 23 \} \).

Next (U.1.2) is applied, with \(f' = 6 \). Let \(f'' = 24 \). Replacing edge 6 by edge 24 in \(B_8 \), and adding a bond \(B_8 \) on edges \(\{ 6, 23, 24 \} \) we obtain \(D_6 \) as in Figure 14.

![Figure 14: \(D_6 \) (column 15)](image)

Column 16: We have \(P = \{ 4, 5 \} \), \(\hat{D} = \{ B_6, B_7, B_8 \} \), \(\pi_0 = \{ B_6 \} \), \(\pi_1 = \{ B_8 \} \), and \(\pi_2 = \{ B_7 \} \). Applying Step T1 to \(B_7 \) we see that \(\text{RELINK1}(B_7) \) has no effect, and determine that \(T(B_7) = 3 \), \(K_1 = B_7 \) (by rule (R1)), and that \(u_1 \) is the node of \(B_7 \) not incident to edge 23. Next we apply Step T3 with \(Q = B_8 \) and \(H_1 = B_7 \) \((t = 1)\). No reorientation occurs, and we deduce that \(T(Q[H_1]) = 3 \). This completes the application of TYPING, and brings us to Step H3. In applying \(\text{RELINK2}(B_6) \), we note that \(W_Q = \{ 4, 24 \} \) and \(Z = \{ 24 \} \), and 4 is switched with 3 to make it adjacent to 24. The application of rule (R4) yields \(K_2 = B_6 \) and \(u_2 \) equal to the end-node of 4 not shared by 24.

Now in Step U0 we have \(C = \{ 4, 5, 16 \} \) and \(f = 16 \). (U2.1) has no effect. (U2.2) results in squeezing the path \(\{ 2, 3, 22 \} \) from \(B_6 \). (U2.3) has no effect because \(R \) has no internal polygons. Finally, applying (U2.4) we obtain \(D_7 \) as in Figure 15.

![Figure 15: \(D_7 \) (column 16)](image)
Column 17: We have $P = \{1, 2, 3, 4, 5\}$, $D = D_7$, and blocks in the depth partition $\pi_0 = \{B_1\}, \ldots, \pi_4 = \{B_8\}$. In TYPING we obtain $T(H) = 3$ for each application of Steps T1 and T3. RELINK1 is applied twice, once to B_4 and once to B_2, but in neither case results in any change. The first application of Step T1 results in identifying K_1 as B_8 and u_1 as the node of B_8 common to edges 5 and 15. K_2 is chosen to B_2 in Step H3 since u_2 is common to edges 11 and 18. No reorientations occur in TYPING or HYPOPATH. Finally, in UPDATE Step U2 is applied. (U2.2) results in squeezing the path $\{11,9\}$ from B_2, and in (U2.3) the path $\{2,3\}$ is squeezed. The application of (U2.4) results in D_8 as in Figure 16. $m(D_8)$, a graph realizing the original M, is given in Figure 17.

![Figure 16: D_8 (column 17)](image)

![Figure 17: A realization for M](image)
REFERENCES

