Wavelet-Domain Approximation and Compression of Piecewise Smooth Images

Files in this item

Files Size Format View
Wak2006May1WaveletDom.PDF 2.113Mb application/pdf Thumbnail

Show full item record

Item Metadata

Title: Wavelet-Domain Approximation and Compression of Piecewise Smooth Images
Author: Wakin, Michael; Romberg, Justin; Choi, Hyeokho; Baraniuk, Richard G.
Type: Journal article
Keywords: Edges image compression; nonlinear approximation; rate-distortion; wavelets; wedgelets; wedgeprints
Citation: M. Wakin, J. Romberg, H. Choi and R. G. Baraniuk, "Wavelet-Domain Approximation and Compression of Piecewise Smooth Images," IEEE Transactions on Image Processing, vol. 15, no. 5, pp. 1071-1087, 2006.
Abstract: The wavelet transform provides a sparse representation for smooth images, enabling efficient approximation and compression using techniques such as zerotrees. Unfortunately, this sparsity does not extend to piecewise smooth images, where edge discontinuities separating smooth regions persist along smooth contours. This lack of sparsity hampers the efficiency of wavelet-based approximation and compression. On the class of images containing smooth$C^2$regions separated by edges along smooth$C^2$contours, for example, the asymptotic rate-distortion (R-D) performance of zerotree-based wavelet coding is limited to$D(R)lesssim 1/R$, well below the optimal rate of$1/R^2$. In this paper, we develop a geometric modeling framework for wavelets that addresses this shortcoming. The framework can be interpreted either as 1) an extension to the â zerotree modelâ for wavelet coefficients that explicitly accounts for edge structure at fine scales, or as 2) a new atomic representation that synthesizes images using a sparse combination of wavelets and wedgeprintsâ anisotropic atoms that are adapted to edge singularities. Our approach enables a new type of quadtree pruning for piecewise smooth images, using zerotrees in uniformly smooth regions and wedgeprints in regions containing geometry. Using this framework, we develop a prototype image coder that has near-optimal asymptotic R-D performance$D(R)lesssim(log R)^2/R^2$for piecewise smooth$C^2/C^2$images. In addition, we extend the algorithm to compress natural images, exploring the practical problems that arise and attaining promising results in terms of mean-square error and visual quality.
Date Published: 2006-05-01

This item appears in the following Collection(s)

  • ECE Publications [1048 items]
    Publications by Rice University Electrical and Computer Engineering faculty and graduate students
  • DSP Publications [508 items]
    Publications by Rice Faculty and graduate students in digital signal processing.