Compressing Piecewise Smooth Multidimensional Functions Using Surflets: Rate-Distortion Analysis

Files in this item

Files Size Format View
Cha2004Mar9Compressin.PDF 180.3Kb application/pdf Thumbnail
Cha2004Mar9Compressin.PS 397.3Kb application/postscript View/Open

Show full item record

Item Metadata

Title: Compressing Piecewise Smooth Multidimensional Functions Using Surflets: Rate-Distortion Analysis
Author: Chandrasekaran, Venkat; Wakin, Michael; Baron, Dror; Baraniuk, Richard G.
Type: Tech Report
Keywords: wedgelets; surflets; wavelets; rate-distortion; approximation; edges; geometry
Citation: V. Chandrasekaran, M. Wakin, D. Baron and R. G. Baraniuk, "Compressing Piecewise Smooth Multidimensional Functions Using Surflets: Rate-Distortion Analysis," Rice University ECE Technical Report, 2004.
Abstract: Discontinuities in data often represent the key information of interest. Efficient representations for such discontinuities are important for many signal processing applications, including compression, but standard Fourier and wavelet representations fail to efficiently capture the structure of the discontinuities. These issues have been most notable in image processing, where progress has been made on modeling and representing one-dimensional edge discontinuities along C&sup2; curves. Little work, however, has been done on efficient representations for higher dimensional functions or on handling higher orders of smoothness in discontinuities. In this paper, we consider the class of N-dimensional Horizon functions containing a C<sup>K</sup> smooth singularity in N-1 dimensions, which serves as a manifold boundary between two constant regions; we first derive the optimal rate-distortion function for this class. We then introduce the surflet representation for approximation and compression of Horizon-class functions. Surflets enable a multiscale, piecewise polynomial approximation of the discontinuity. We propose a compression algorithm using surflets that achieves the optimal asymptotic rate-distortion performance for this function class. Equally important, the algorithm can be implemented using knowledge of only the N-dimensional function, without explicitly estimating the (N-1)-dimensional discontinuity. This technical report is a supplement to a CISS 2004 paper "Compression of Higher Dimensional Functions Containing Smooth Discontinuities". The body of the paper is the same, while the appendices contain additional details and proofs for all theorems.
Date Published: 2004-03-01

This item appears in the following Collection(s)

  • ECE Publications [1028 items]
    Publications by Rice University Electrical and Computer Engineering faculty and graduate students
  • DSP Publications [508 items]
    Publications by Rice Faculty and graduate students in digital signal processing.